
AD-A091 092 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 9/2
AN IMPLEMENTATION OF MULTIPROGRAMMING AND PROCESS MANAGEMENT FO--ETC(UI

UNCLASSIFIED N

I,- flfllfllflfflfflfllfl

b ISO 13

1L25 1111.4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

NAVAL POSTGRAOUATE SCHOOL
Monterey, California

1' THESIS
AIMPLEMENTATION OF MULTIPROGRAMMING AND

PROCESS MANAGEMENT FOR A SECURITY KERNEL
OPERATING SYSTEM

by

~zz~ Stephen Leslie Reitz

I..I

SThesis Advisor: R. R. Schell

: 'Approved for public release; distribution unlimited

Q8 ,, 21)03

SECUITV CLAISPICAYON OF THIS PAEg fgbo Om.e~e

*iPNpaI DOCUMENTATION PAGE srn CWLTGPH
*REPORT HOOU jGOV ACC810 111WO VU 9NTS CATALOG N4,01111111

T -~.-.~-- --- - - - - 7SPE CowanEO(j An Implementation of Multiprogramming and Mas L Kesisa
Process Management for a Security Kernel une 1980,
Operating System, 4 -. P9FOM~Oam 0me. 09POaT NumA611

7. AUNVOf S. CONTRACT ON GRANT NuU111e).

(4~\Stephen Leslie/ Reitz
11. 011110041 we ORGANI*ATION6 RARE AND A00119811 as. P PCT. T A"

Naval Postgraduate School 'tsRIM g Oa INUU 4 ST

Of CONTROLLING OFpica" NAMC AND AGGRESS97

14: MONITORING AGENCY ftAME 6 &OOES11(dieemn hub CWWW104l 01PRODi Is. SEcuRITY CLASS. (of as@ emu",

124 1 UNCLASSIFIED

16. GISTRIDUTIO" STATEMEgNT (*1 ibff An~t

Approved for public release; distribution unlimited

IT. 0191111U~TION STATEM49NI (of fft. obfteagi fm df~ 81109102. 10 1111O RUN Cesif

1S. SUPPLEMEN14TARY NOTES

Is. ;WN"E MaR95 110 (Cmi. rowo Fin 0m i tol mee p am fame00 OF mom umo
operating systems, distributed computer networks, security kernel,
computer security, microprocessors, archival storage

*AMRACT (C=m ims - offee Me 160011 Md OM Pp 10eb NOO1 006
This thesis presents an implementation of multiprogramming and

process management functions for the security kernel of a distributed
multiprocessor system. The implementation is based on a family of
operating systems designed to provide controlled access in a micro-
computer network to data bases containing multiple levels of sensi-
tive information.
Multiprogramming improves system efficiency and creates a virtual

un s~ios OF1 Rv a is sefe-p

(Page 1) S/N 12OeSS uutcu

-environment which frees the remainder of the operating system from
a dependence on processor configuration. Processor management
coordinates the asynchronous interaction of system processes.

This implementation describes a processor multiplexing technique
for a distributed kernel and presents a virtual interrupt
mechanism. Its structure is loop free to permit future expansion
into more complex members-of the design family.

Accessior rcr

NTIS c;:&[
DTIC

Dist

ODD Po01 1473 2
b 1l14-"o1 now0S9 ,,AW GIT& W OP To

Approved for jublic release; distribution unlimited.

An Implementation of Multiprogramming and
Process Management for a Security Kernel

Operating System

by

Stephen Leslie Reitz
Lieutennant Commander, United States Navy

BS, Purdue University, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 19eO

Author

Approved by:

Thesis Advisor

Second Reader

C rma epart o omputer Science

Dean of Informat n and Policy Sciences

3

ABSTRACT

This thesis presents an implementation of

multiprogramming and process management functions for the

security kernel of a distributed multiprocessor system. The

Implementation is based on a family of operating systems

desiened to provide controlled access in a microcomputer

network to data bases containing multiple levels of

sensitive information.

Multiproeramming improves system efficiency and creates

a virtual environment which frees the remainder of the

operatinp system from a dependence on processor

configuration. Processor management coordinates the

asynchronous interaction of system processes.

This implementation describes a processor multiplexing

technique for a distributed kernel and presents a virtual

interrupt mechanism. Its structure is loop free to permit

future expansion into more complex members of the design

family.

4

I !

TABLE OF CONTENTS

I INTRODUCTION

A. BACKGROUND i....9.......

B.COM'PUTER SECURITY 5
1. Reference Monitor 16

.'2. Security Policy... 17

a. Non-discretionary Policy 18

b. Discretionary Policy 18

V. Security Kernel Design 19

C. SCOPT OF TESIS 19

iI. OPERATING SYSTEM DESIGN CONCEPTS 21

A. DESIGN PEIIOSOPH 22

B. GEN-RAL DESIGN GOALS 24

1. Logical Structure 24

2. Fault Tolerance 25

3. Efficiency 25

C. SPECIFIC DESIGN GOALS.... 25

1. Internal Security 27

2. Conficuration Independence 27

3. Sub-setting Capability 2?

D. DESIGN REQUIREMENTS 28

1. Functional Requirements 28

a. Process Oranization 28

5

i'i

b. Memory Segmentation 31

, c. Abstraction 32

d. Resource Virtualization 33

2. Hardware Requirements.....................34

a. Processor Virtualization 34

b. Memory Virtualization 35

c. Protection Domains 35

E . ARDVARE SELECTION o36

1. ZILOG Zol..37

a. Memory Segmentation................... .37

b. Mul tiprogrammint...

c. Two-domain Operations............ 39

2. Selection Rationale................... 9

III. o SECURITY KERNEL DESIGN 41

A. PROCESS VIEW

1. Supervisor Processes.......... 42

2. Kernel Processes42

3. Host Environment 43

B. VIRTUAL MACHINE VIEW

1. Inner Traffic Controller Module 44

2. Traffic Controller Module 47

a. Scheduling 47

3. Non-fiscretionary Security Module 51

6

4. Event Manager Module 51

5. Segment Manager ,Module 52

6. Gatekeeper Module 52

Co RE I W.. 53

IV. IM.°LEMENTATION ..o 55

A. DEVELOPMENTAL SUPPORT 55

P. INNER TRAFFIC CONTROLLER 56

1. Virtual Processor Table 57

2. Level-1 Scheduling 59

a. Getwork 61

3. Virtual Processor Instruction Set 65

a. Wait 66

b. Signal 71

c. Swap_VDBR 72

d. Idle 73

e. SetVPreempt9

f. Test VPrpempt.......................... 7

C. TRAFFIC CONTROLLER

1. Active Process Table 76

!2. Level-2 Schedulilng Ee

a. TC Getwork 81

b. TCPreempt Eandler 62

3. Zventcounts 84

a. Advance 99999999999999999

7

i. --~

b. Aw a it aoeis

c. Read 86

d. Ticket 86

D. SYSTEM INITIALIZATION......... e6

V. CONCLUS ION. * . .*....

A. REC OMMENDAT IONS *......... 91

S. FOLLOW ON WORK.. 92

APPENDIX A - INNER TRAFFIC CONTROLLER LISTING 93

APPENDIX 3 - TRAFFIC.CONTROLLER LISTING 126

APPENDIX C - EVENTCOUNT PROCEDURES 134

LIST OF REFERENCES 157

INITIAL DISTRIBUTION LIST.........................o......139

.C

1 . .

LIST OF FIGURES

1. SASS System .. 13

2. Reference Monitor16

3. Process History 3e

4. Segmented Addressing 31

5. SASS Protection Rings 36

6. SASS Process configuration 43

7. Distributed Kernel 45

6. Two-level Scheduling 5F

9. MMU Image ; o.....s............ 56

le,. Virtual Processor Table 5"

11. Virtual Processor States 5E

.12. SWdAPDPR *..*too.........%.......o.... 6e

13. Kernel Stack Segment ... 65

14. GETWORK Procedure....................................66

15. Active Process Table 79

16. Initial Kernel Stack EE

9

popo-

ACKNOWLEDGEMENT

This research is sponsored in part by Office of Naval

Research Project number NR 33?-05, monitored by Mr. Joel

Trimble.

I am indebted to a number of people for the support they

have Riven me in completing this thesis. Lt. Col Roger

Schell, my advisor, was a never ending source of new ideas.

He provided me with solutions to many seemingly unsolvable

problems, and I greatly appreciate the many hours he has

spent helping me to clarify my work. Without his atle and

enthusiastic guidance, this thesis could not have been

written.

Mike Williams and Bob McDonnell helped me with many

hardware problems that I encountered in wettine up and

running on an unfamiliar system.

Finally, I would like to thank my wife, Madelyn, and my

children, Stephen and Monica for their patience and

understanding. They won't have to tip-toe around the house

any more.

10

I. INTRODUCTION

The application of contemporary microprocessor

technology to the design of large-scale multiple processor

systems offers many potential benefits. The cost of

high-power computer systems could be reduced drastically;

fault tolerance in critical real-time systems could be

improved; and computer services could be applied in areas

where their use is not now cost effective. Desirnine such

systems presents many formidable problems that have not been

solved by the specialized single processor systems available

today.

Speci'ically, there is an increasing demand for computer

systems that provide protected storaRe and controlled access

for sensitive information to be shared among a wide range of

users. Data controlled by the Privacy Act, classified

Department of tefence (DoD) information, and the

transactions of financial institutions are but a few of the

areas which require protection for multiple levels of

sensitive information. Multiple processor systems which

share data are well suited to providing such services - if

the data security problem can be solved.

A solution to these problems - a multiprocessor system

design with verifiable information security - is offered in

12.

7

a family of secure, distributed multi-microprocessor

operating systems designed by O'Connell and Richardson [1].

A subset of this family, the Secure Archival Storage System

(SASS) (2,3], has been selected as a testbed for the general

design. SASS will provide consolidated file storage for a

network of possibly dissimilar "host" computers. The system

will provide controlled, shared access to multiple levels of

sensitive information (figure 1).

This thesis presents an implementation of a basic

monitor for the O'Connell-Richardson family of operatine

systems. The monitor provides multiprogramming and process

manaRement functions specifically addressed to the control

of physical processor resources of SASS. Concurrent thesis

work [4] is developinR a detailed design for a security

kernel process, the Memory Manager, which will manage SASS

memory resources.

12

SASS SYSTEM

HOSTi 0 0 HOSTn
DATA LINKS

SASS BOUNDARY

OCAL LOCAL
MCPU 0 0 MEM CPU

GLOBAL

SECONDARY SECONDARY
MEM 0 0 0 MEM

(e.g., (e.g.,hard disk) hard disk)

Figure 1

13

A. PACKGROUND

The general family design is composed of a supervisor

and a security kernel. The supervisor provides dynamic

linking, a discretionary security policy, demand memory

management, and a hierarchical file system in support of the

user. The security kernel manages physical resources to

provide scheduling, interprocess communication and

synchronization, and a non-discretionary security policy.

The design is loop-free to permit the implementation of

system subsets rancinp from a simple monitor to a general

purpose computer utility.

SASS is a subset of this system and does not require use

of several higher levels of the general system design.

Dynamic linking, demand segmentation, transient prccesses,

and a user domain are not necessary for its intended

operation, and are excluded. The software of SASS is

partitioned into two domains. The security kernel, which is

the most privileged domain, manages system physical

resources in a manner desirned to prevent unauthorized

information flow, regardless of action taken by other

elements in the system. The less privileged domain, the

supervisor [2), provides each host with a hierarchical file

system in which it may store and retrieve files and share

them with other hosts. The hosts send commands and transfer

files via bidirectional digital links. SASS was designed for

14

implementation of currently available microprocessor

hardware. Multiprogramming is used to improve system

efficiency and to create a virtual environment which frees

the remainder of the operating system from a dependence on

the physical processor configuration. Processor management

provides a means of coordinating the interaction of the

asynchronous processes which comprise the system. This

implementation employs a processor multiplexing technique

for a distributed kernel and presents a virtual interrupt

mechanism. The modular, hierarchical structure of the

software is loop-free to support system expansion to higher

level functions.

Althoueh the primary .oal of the design is security, the

clean, logical, process-oriented structure of SASS offers

other benefits as well, including fault tolerance, resource

configuration independence, and efficiency.

B. COMPUTER SECURITY

The need for providing protection for information within

a computer system is well documented. Development of the

security kernel technology (5,6], has transformed the

operatine system designer's approach from a game of wits

with penetrators into a methodical design process.

In general, security is provided by providing protection

for information in accordance with a specific protection

15

policy. In the case of computer security this is

accomplished by controlling the access of people to

information. Althoueh this protection can be provided by

external controls (e.g., confining the computer system and

all its users within a physical security perimeter), this

method is inefficient and prone to human error. Furthermore,

a distributed computer network will probably be dispersed

over too wide an area to be physically confined. Supported

by the security kernel approach, an internal protection

mechanism controlled by the computer operating system is a

feasible solution.

1. Reference Monitor

The concept of protection is realized within the

computer system by the implementation of a mathematical

model of information security. This model is based on an

abstract representation of security called the Reference

Monitor [7]. The Reference Monitor describes a mechanism for

controlling the access of subjects to objects, based on a

set of access authorizations (figure 2).

Reference Monitor
SU JE TR

FER NCE
OB EC

(.e., pr ce s Mo,,,o, Ie re file)

SAUTFRIkION]

Figure 2

16

i4

Every time a subject attempts to access an object,

the Peference Monitor checks to determine if the subject has

authorization to perform the desired operation (e.e., write,

read) on the object. If the policy does not authorize the

access, the Reference Monitor will prevent the subject from

performing the requested operation. This mechanism is

realized within the operating system as the security kernel.

Several system features are required in order for the

mechanism to function correctly.

First, every reference to information (i.e., every

access to primary memory by the processor) must go through

the security kernel.

Second, the implementation of the security kernel must

be an exact representation of the mathematical model of

information security.

Third, the security kernel must be tamper-proof.

2. Security Policy

The security policy to be enforced by the computer

system consists of external laws, rules, regulations, etc.,

which establish permissable information access independent

of the computer system. Therefore, a computer system will be

'secure only with respect to a specific security policy. The

security kernel concept supports a broad range of security

policies that can be divided into two classes,

non-discretionary and discretionary security.

17

-4.

a. Non-discretionary Policy

Non-discretionary security policy uses labels to

insure only permissable access of subjects to objects is

provided. Object labels reflect object sensitivity and

subject labels reflect subject authorization. (For example,

National Security Policy labels include Unclassified,

Secret, etc.). A non-discretionary security policy provides

compromise protection (from unauthorized reading), integrity

protection (from unauthorized modification), and must

prevent information leaks resulting from indirect access to

unauthorized information as well. A non-discretionary

security policy requires that all subjects and objects have

labels. Most contemporary computer systems do not provide

this explicit labeling and therefore implicitly make all

access permissable.

b. Discretionary Policy

Discretionary security policy provides a finer

division of access by allowing individual subjects to decide

which of the permissable accesses, determined by

non-discretionary policy, will actually be allowed (e.g.,

DoD's "need to know"). Many contemporary computer systems

support discretionary security policy with access control

lists, file passwords, capability lists and other

mechanisms.

18

3. Security Kernel Design

By careful interpretation of the mathematical model

of the Reference Monitor, the security kernel is designed to

be a subset of operating system functions. Kernel primitives

form an interface between this subset and the remainer of

the system. If these primitives are implemented correctly,

their use guarantees that information will be protected in

compliance with system security policy, regardless of any

action taken by other portions of the operating system or by

the user. A more detailed discussion of the security model

is provided in [4,5,6].

C. SCOPE OF TH SIS

In this chapter a subset of the general operating

system design, the Secure Archival Storage System (SASS),

was described. The concept of information security was

examined and the security kernel was presented as a

technically sound approach to the problem of providing

internal computer security.

Chapter Two will discuss the design goals of this

operating system. Functional design requirements will be

developed and the issues of physical resource management and

performance will be traced to specific attributes desired in

system hardware. The rationale behind the ultimate selection

of Zilog's zeU2e Microprocessor and Zee1e memory managerment

19

p!

unit (MMU) for use in the SASS testbed implementation of

this operating systerr will be discussed.

Chapter Three will describe the high level design of

SASS with an emphasis on the security kernel design. A view

of the user (computer host) environment as a collection of

cooperating processes will be presented, and the

hierarchical structure of the distributed kernel modules

will be examined in detail.

Chapter Four will present an implementation of the SASS

security kernel modules that provide multiprogramming and

processor management. The construction of the virtual

machine environment will be described and the advantages of

a two-level scheduling mechanism will be explained.

Finally an evaluation of this implementation will be

presented with recommendations ?or improving the design and

sueRestions for follow on work.

20

IW

II. OPERATING SYSTEMS DESIGN CONCEPTS

The kernel primitives providine multiproorammine and

process management form one of the smallest and most basic

subsets in the family of operating systems designed by

O'Connell and Richardson [4]. As developed here they were

implemented specifically to support SASS. In general the

same kernel primitives will support all members of this

design family.

Before discussing the high level design of the SASS

security kernel and presenting an implementation of these

primitives, it is useful to investigate the general design

methodology applied to the development of this operatine

system. In this chapter the design goals of SASS will be

analyzed and traced to functional requirements and hardware

attributes considered necessary or desirable in support of

the system's design goals. It is recognized th-at the

operating system user Will protably not address these issues

directly when specifying system design goals. The material

presented here concerns the approach of the system designer

to the definition of requirements implicitly related to user

desien coals.

21

A. DESIGN PFIIOSOPHY

Two issues confront the operating system designer.

First, he must provide system functions which support the

services requested by the user. These functional

requirements affect the logical design of the system.

Second, he must address issues of cost and performance. Cost

and other management considerations will not be addressed

here. Performance issues concern the management of physical

resources and ultimately can be reduced to hardware

requirements.

There is a considerable amount of literature devoted to

the development of the functional design of operating

systems. Dijkstra [81 has described a technique for reducing

the complexity of the design by allocatinp operating system

activities to a number of cooperating processes. Process

structure is simplified in turn by defining its functions in

levels of increasing abstraction and by applying the

principles of structured programming.

madnick and Donovan [91 have described an operating

system as a hierarchical extended machine. Program modules

are added to the system hardware to provide many extended

Instructions in addition to the hardware instructions

available on the tare machine. In complex systems one

extended machine may be constructed upon another to form a

system composed of levels of abstract (virtual) machines.

22

I..

Saltzer (i0 and Reed [11, 12) have discussed the

advantates of resource virtualization and have described

some useful interprocess communication mechanisms. The

general design strategies presented in this and other

research aid the operating system designer in developing

system functions in a clean, logical, verifiable design.

The selection of an appropriate computer architecture,

which supports both functional requirements and the

efficient management of physical resources, often proves to

be a more difficult issue. Frequently operating systems

desin is shaped by the capabilities of syster hardware.

This may be a result of performance limitations or cost of

available hardware, but often this course is taken because

traditionally, system design begins with hardware. Since a

primary ?oal in operating syStms desien is to create a

specific operational environment for the user, it would

appear to be preferable to design from the desired

environment "down to" the hardware. In this way all

components of the system, software and hardware alike, are

evaluated in the light of the ultimate goals of the system,

and any incompatabilities between required functions and

hardware capabilities will be discovered early in the

design. Then, if modifications are required, design changes

can be made at a high level which will preserve design

integrity. LSI technology currently provides a wide variety

of relatively inexpensive microprocessor hardware from whi:h

23

Od

_NNW-

to select specific physical components. Furthermore, it is

often feasible to design special purpose hardware to

specification. So the traditional restrictions on hardware

versatility in systems design need not apply in many cases

to microprocessor systems.

In summarv, the top-down design philosophy can be

applied to operating systems design in the following manner:

1. Identify general and specific design goals.
2. Derive functional design requirements.
3. Identify performance requirements.
4. Select system hardware.
5. Develope kernel software.
6. Develope the remainder of the O/S software.

P. GENERAL DESIGN GOALS

Altbou.ah many design goals depend upon specific system

application, there appear to be some attributes desirable in

all operating systems.

1. IoPical Structure

Computer system design is an engineering problem and

the tools of the enRineerine design process should be

applied to the development of software as well as hardware

[131. Clarity should be a major goal of any design for if

the operating system cannot be understood easily it will be

difficult to test, difficult to maintain, and its

correctness will always be in doubt. A sound enginering

design philosophy is not guaranteed to generate error free

24

- -' --------

systems, but if system functions are cleanly oreanized and

well understood, then it is likely that there will be few

errors and these can be corrected without difficulty when

discovered.

2. 7ault Tolerence

If an operating system is to be reliable, the

software it uses must be protected from damage whenever

possible. In particular, tasks performed by the system

should be isolated from another so that a rralfunction (e.g.,

as the result of hardware failure) in one task has no effect

on others.

A3. Efiiec

The eeficient use of physical resources (processors,

memory, periphals, etc.) continues to be a primary design

goal. However, since hardware is no longer the scarce,

expensive commodity it once was, a concern for overall

system efficiency (i.e., higher thorugh-put, faster response

time) may be more important. With appropriate component

selection many software functions can be replaced by

hardware functions that can provide an improvement in system

performance at a small additional hardware expense.

C. SPECIFIC DESIGN GOALS

The family of operating systems designed by O'Connell

and Richardson provides all of the services expected of a

25

state of the art, general purpose operatine system. Many of

these general services are not necessary in the SASS subset

of the family. The number of processes required by QASS is

determined by the number of host computers linked to SASS

hardware. A design choice was made to fix this number at

system generation time. Therefore dynamic process management

is not required; SASS processes exist for the life of the

system. A primary function of SASS is the transfer of files

between host computers and SASS via bidirectional dipital

links. As a result, the system will have a low transaction

rate, and the relatively fast response time desired in a

time-sharing system I. not required here. Sass does not

provide pro~rammine services to users; the system strictly

manages an archival storage system. This elimirates the

requirement for a user domain and because the demands on

primary memory are not excessive, there is no need for

dynamic memory management.

Other services of the eeneral system provide

essential support to SASS. These services include I/O

management, file management, and the physical resource j
management and information protection functions provided by

the security kernel.

The SASS requirement to provide multiple host computers

(users) with controlled, shared access to a multilevel

secure "data warehouse" leads to several design goals. These

include: internal security to proctect information in a

26

distributed computer network; configuration independence for

system versatility; and a subsetting capability to support

future system expansion to more complex memters of the

design family.

1. Internal Scurity

A unique feature of SASS is the specification of

multilevel security as a primary design goal. Multilevel

security provides controlled sharing of information of

varyine sensitivity among many users in accordance with an

access policy implemented internally by the operating

system. It is essential that a system supporting a remotely

accessed data. base containing information of different

access classes be provided with an internally enforced

security policy.

2. Confieuratiot Independeuce

The resource configuration of a multicomputer system

is highly changeable. Processors are added and removed;

memory is reconfieured; interconnection schemes are altered

and peripherial equipment is changed. The operating system

of such a design should be sufficiently flexible to permit

maintenance and to allow for growth and reconfiguration

without requiring drastic system redesign or noticeably

affecting the user's environment.

3. Sub-setting Capability

Operating system "sub-settine" refers to the ability

to form meaningful subsets of the design by eliminating many

27

iI

of the services that can be provided by the system without

affectine the usefulness of the remainder of the system.

Sub-setting permits the system to be tailored to fit a

number of specific designs ranging from a simple monitor to

a full service time-shared computer utility. The

implementation presented in this thesis creates a monitor

that provides multiprogramming and processor management.

This subset supports more complex family members of the

design such as SASS.

D. DESIGN REOUIREMENTS

In a top-down approach to design, goals are clarified

and defined by requirements which describe either the system

functions or address cost and performance issues (hardware

requirements). The functional requirements defined below

support the specific design roals of SASS and provide

features desirable in any operating system, such as a

logical structure, fault tolerance, and efficien'y of

operation.

1. Functional Requirements

Functional requirements define services which must

be provided to support the user's environment.

a. Process Organization

By designing an operating system as a collection

of cooperatint processes, system complexity can be greatly

28

reduced (E]. This is because the asynchronous nature of the

system can be structured logically by representing each

independent, sequential task as a process and by providing

Interprocess communication mechanisms to prevent races and

deadlocks during process interactions.

The notion of a process provides a complete

description of all instructions executed and all memory

locations referenced during the performance of a task. A

process is defined by an address space and ar execution

point. The address space is the set of memory locations

which could be accessed during process execution. (The

process is viewed as a past, present and future "history" of

memory locations which actually were referenced.) The

execution point is the state of the processor at a rIven

instant during process exe6ution. In the abstract view, an

address space is defined by a collection to discrete points,

each representing a memory word. The process is described by

the path traced through this address space from process

creation to destruction. In figure 3 the main path traces

the process execution point as it moves from one instruction

(i.e., memory word) to another during process execution. The

branches from this execution point path represent data

references.

29

Process History

Address space

Process
creati on

~Process
•destruction

Figure 3

Several advantages result from using a process

oriented design. As a tool for dealing with the asynchronous

nature of system operation, processes provide a simple,

logical, high-level structure for the design. For example,

the Secure Archival Storage System supports each host with

three processes: a I/0 Manager, a File Manager, and a Memory

Manaper, which interact to provide secure file managerrent

services to the host. This interaction will be described

further in the next chapter. Since each process is confined

to a secific address space, tasks are isolated from one

another and system fault tolerance is improved. 3 y providing

an internal representation for each user, a process nicely

fits the definition of a "subject" in the Reference Monitor

and therefore supports the design goal of providing internal

security.

3e

b. .Memory Segmentation

The address space of a process is composed of a

collection of segments. A segment is a logical collection of

information (e.g., procedure, data structure, file, etc.)

and is the basic logical object of this design. Figure 4

illustrates the two-dimentional nature of the segment

adiress. Each segment consists of an arbitrary region of

memory containing a sequence of words wit conventional

linear addresses. Two-dimentional addressing frees

information from dependence on a particular memory location

by making it arbitrarily relocatable.

Segmented Addressing

<<SFG #n>> OFFSET

Descriptor serment Segment gn;TT__5__
f

0 f
SEG #n - 5

et _. ___________

Figure 4

The descriptor segment provides a list of

descriptors for all segments in a process address space. In

addition, segmentation supports information sharine since a

segment may belong to more than one address space.

i
31

Segmention also provides a means of associating logical

attributes and labels with each segment, such as access

class, domain, etc. This feature supports segments as

internal representations of the Reference Monitor's

object .

c. Abstraction

Abstraction provides a method for reducing

problem complexity by applying a general solution to a

collection of specific cases [14 . Structured proprammin.

provides a tool for creating abstraction in software design.

By strictly applying two special rules in addition to the

general principles of structured programming, a structure

consisting o* levels of increasing abstraction can be

constructured.

First, calls cannot be outward toward higher

levels of abstraction. This frees lower levels from a

depei,!ence on higher levels by creating a loop-free

stricture (15] and results in a design which is capable of

having subsets.

Second, calls to lower levels must be by special

entry points or gates. Each level of abstraction creates an

virtual hierarchical machine [9). The Rate to each level

provides a set of instructions created for that virtual

machine. Thus higher levels may use the resources of lower

levels only by applying the instruction set of a lower level

machine. (At domain boundaries, use of gates is strictly

32

enforced by a ring-crossing mechanism; otherwise gate use is

implicit in the structure of the software.) Once a level of

abstraction has been created, the details of its

implementation are no loneer an issue. Instead users see

layers of virtual machines , each defined by its extended

instruction set.

Each process used in SASS is designed in levels

of abstraction. 'When the rules of abstraction are applied to

level 0, the physical resources of the system, these

resources are "virtualized". Thus the first level of

abstraction creates "virtual processors", "virtual memory-,

and "virtual devices" from the system's hardware. At each

higher level the detail of the design is reduced. The rate

at the boundary between the hihest level of the security

kernel and the lowest level of the supervisor provides a

mechanism for isolating the kernel as well as insuring that

each memory access is via kernel software. This irechanism is

implemented in SASS by a ring-crossing mechanism called the

Gatekeeper.

d. Resource Virtualization

The first levels of abstraction above sySter

hardware create virtual representations of physical

resources (virtual processors, virtual memory, virtual

periphals). Since upper levels of the design operate on

these virtual resources, rather than on physical resources,

most of the design (i.e., everything above resource

33

virtualization levels) is independent of the physical

configuration of the system. By providing virtual to real

resource binding in the kernel, and by enforcing entry into

kernel levels with the Gatekeeper, SASS protects physical

resources from tampering and insures memory access only via

the kernel. As a result, the kernel modules of each process

will guarantee that the system's non-discretionary security

policy is enforced. Includinr in the kernel only those

functions essential to system security keeps it small and

reduces the job of verification to manageable proportions.

2. Fardware Reavirements

Virtual resources are created by the multiplexing of

various types of information on a physical resource.

Multiplexing can be defined as the use of a single resource

for different purposes at different times. For exarmple the

physical bus lines can be used both for addresses and data

durine different times durine the machine cycle. Similarly,

logrical users of a hardware system can share resources. The

atility to multiplex processors and memory efficiently

provides a mechanism for the virtualization of these

physical resources.

a. Processor Virtualization.

A virtual processor is a data structure that

contains a complete description of a process in execution on

a physical processor at a given instant. This description is

34

contained in the process execution point. The address space

of the process must be accessable to the virtual processor

when it is loaded on (bound to) a CPU. To provide a useful

virtualization capability, the CPU must have the ability to

efficiently multiplex process exection points and address

spaces (i.e., it must support multiprogrammine).

b. Memory Virtualization.

In many memory handling schemes Process cannot

run unless the entire address space is loaded in primary

memory. This may require a lare, main memory or it may

restrict the size of the address space. An alternative plan

requires an 'operating system which manages primary and

secondary memory to create the illusion of a memory which is

larger than the system's primary memory. Since the larger

memory is' only an illusion, it is often called virtual

storage. The logical, relocatable, information otjects

created by memory seumentalon, provide an essential merrory

multiplexing mechanism for the efficient implementaticn of

virtual storape.

c. Protection Domains

An essential requirement of internal security is

that the security kernel be isolated from other elements of

the system. This can be accomplished by the construction of

protection domains. Protection domains are used to arrange

process address spaces into rings of different privilege.

This arrangement is a hierarchical structure in which the

35

.most priviledred domain is the innermost ring. The structure

essentially divides the address space into levels of

abstraction with strictly enforced Rates at the ring

boundaries (Figure 5).

SASS Protection Rings

Gatekeeper

Figure 5

Protection rings may be created in software, but

a hardware implementation, where zate use is enforced by

hardware, is much more efficient [16].

The protection provided by the ring structure is

not a security policy. (Security protection is *impleme.ted

i by a lattice structure known to the Non-discretionary

Security module in the kernel.) It does, however, enforce

the hierarchy of the virtual machine by creating a

privilered kernel ring within the supervisor rine.

E. HARDWARE SELECTION

The manifestation of an operatinp system desirn is, of

course, software in execution on system equipment. If system

36

equipment must be selected early in the design, care must be

taken to insure that overall system design goals are

compatible with actual hardware capabilities. If design

goals must be met (e.g., the enforcement of internal

security in SASS), then actual hardware selection should be

made late in the design process. Then, even if a poor

hardware choice is made, the penalty for correcting it will

be small, since only the lowest level of the design (where

resources are virtualized) need be changed. In any case the

desipn of the operating system and the design or selection

of system hardware must proceed in concert.

The ZPCei is a general purpose 16-UIt microprocessor

(171 with an architecture which supports nemory segmentation

and two-domain operations. It was selected as the target

machine for implementation of the system, because of the full

range of support and close match it provided to design

requirements. These supporting features are described below.

a. Memory Segmentation

The CPU can directly access 8M bytes of address

space using a memory segmentation capability rrovided

externally by a Memory Management Unit (Z8010 MMU). The

23-bit address required to address 8M bytes is a lo ical two

dimensional address consisting of a 7-bit segment number and

a 16-bit offset. The memory management unit converts this

into a 24-bit address for the physical memory. The address

37

space can be divided into as many as 12E relccatable

serments containinp, up to 64K bytes each. Each memory

segment can be assigned several attributes which rrovide

memory access protection (read only , system mode only

(i.e., ring #), execute only, etc.) and memory management

data (chanred, referenced). With these capabilities the

ZBOel CPU can support all requirements for segmentation,

memory virtualization and protection domains.

b. Multipropramming

Processor multiplexing is supported by the C.Tj's

multiprogramming capabilities. MULTI-MICRO instructions aid

in establishing a synchronization mechanism (by mutual

exclusion) between multiple processors. Seperate stack, data

ard code address spaces are maintained for each rinR of

operation. The load mpltiple instruction allows the contents

of registers to be saved and loaded efficiently. These

features permit efficient storing and loading of process

execution points.

Address space multiplexinR is also supported but

is somewhat inefficient. In some systems, such as Multics

(1], a descriptor base register (DBR) is provided to point

to a process descriptor segment in memory, so changing the

address space of the physical processor is accomplished

merely by changing the DBR. Since the Z8001 CPU implements

the descriptor segment as a collection of descriptor

registers in the MMT, all of the descriptors for the address

38

6k-

space must be saved and loaded to change processes. This can

make processor multiplexi, (multiproprammine quite

inefficient. In the worst case, when the entire MMU is saved

and loaded, a process switch will take about 2 ms. It may be

possible to improve on this performance by increasing the

number of MMU's in the system. Then the address space can be

changed simply by switching control to another MMU.

c. Two-Domain Operations

The ZseeI Cpu can operate in either system mode

or normal mode. In the system mode all operations are

allowed, but in the user mode, certain system instructions

are prohibited. The system call instruction allows

controlled entry to the system mode. This two-domain

instruction capability suppcrts the two domain sturcture of

SASS by providing a single controlled entry into the kernel

(SYSTEM CALL instruction). The descriptors contained in the

MMU reristers provide the capability to partition process

address spaces into supervisor and kernel domains.

2. Selection Rationale

The characteristics listed above - processor

multiplexing support, a memory segmentation capability,

multiple domain insturctions, and multiple domain memory

partitioning - are features which are essential to an

efficient implementation of SASS. The ZEei has other

desirable features: vectored and non-vectored interrupts,

large, powerful instruction set, many data types, etc. These

39

attrilutes make the Zilog system a suitable choice as a bare

machine for the Secure Archival Storage System.

F. StTMMART

This chapter has provided a description of the

methodology employed in the design and specificatior of

SASS. In particular it was noted that a top-down design

philosophy most effectively supported implementation of

system design -oals. Requirements supportine the primary

design goal of internal security and other general and

specific goals were defined and traced to desired hardware

capabilities. Finally, capabilities of ZiloR's Z-e1

microprocessor which support the SASS design were described.

Chapter Three will provide an overview of the SASS

design. The desigr will be described from a process

viewpoint and the hierarchical structure of the distributed

kernel will be examined.

40

III. SECURITY KERNEL DESIG-4

The high level design of the Secure Archival Storage

System can be described by a collection of cooperating

processes. The use of processes to perform operating system.

functions greatly simplifies the problem 6f descritine the

asynchronous manner in which services are requested.

A. PROCESS VIEW

There are two kinds of processes within SASS, supervisor

processes and kernel processes. Supervisor processes provide

high level services to host computers £2]. Certain functions

of the operating system are distrituted throughout all of

these processes; that is, supervisor processes logically

share a collection of distributed kernel modules. Kernel

processes provide specialized services within the operating

system. The system user is not aware of the existence of

these processes, but they are called upon, within the kernel

domain, by supervisor processes to perform necessary

operating system functions in support of user services.

4 , .41

1. Supervisor ProCesses

One pair of supervisor processes, an I/C ?vana-er and

a Yile Manager, represents each computer host supported by

SASS.

The File Manager controls SASS and directs all

interaction between SASS and computer hosts in order to

maintain a structure of hierarchical files on behalf of each

host It interprets commands received from hosts via the I/C

Managpr ard coordinates tae execution of requested services

with assistance from the I/O Manager and the Memory Manager

(described below).

The I/O Manaper transfers information via a link

between each host and SASS. Data is transfered by fixed-size

packets in command, data, and. synchronization formats. The

I/O Manager provides only a transfer service and does not

interpret the data.

2. Tarrel Proc.ees

The two kernel processes used by SASS are the Memory

Mana.er and the Idle process. The Memory Manager controls

primary and secondary memory. The design of this process is

the topic of concurrent thesis research [3). The Merrory

Manager transfers segments between primary and secondary

memory in response to requests from supervisor processes.

The Idle process defines the "no work" state of the

system. SASS attempts to schedule useful work on syster

processors whenever possible. Only when there is no work to

42

.* i

be done, (i.e., no commands pending from hosts) will this

process te called upon to execute.

3. Host Environment

Fost computers view SASS as a remote data warehouse

where they may store and retrieve files (figure 6). Each

host is provided with a virtual file hierarchy constructed

from directory and data files. A pair of SASS supervisor

processes (an I/O Manager and a File Manager) provide each

host with a set of commands by which it may store and

retrieve files in its virtual file system and share files

with other hosts. The distributed kernel functions of each

process control the physical resources of the system in

support host commands and SASS security policy.

SASS Process Configuration

1/0 me Aile M~r

supervisor

kernel

hardware

CPU PRI MEM SEC MEM

data warehcuse"
FIGURr

43

B. VIRTUAL ,OACFINE VIEW

The eistributed modules of the security kernel create a

virtual hierarchical machine which controls process

interactions and manages physical processor resources. The

kernel is not aware of the details of process tasks. It

knows each process only by a name (viz., an entry number in

a table) and provides processes with schedulinR and

interprocess communication services based on this process

identifier. All supervisor processes share the modules of

this virtual hierarchical machine (Fieure ?).

The kernel is constructed in layers of abstraction. Each

layer, or level, builds upon the resources created at lower

levels. The rules of abstraction described in Chapter 2 were

applied to the desin of this structure. Level £ is the tare

machine which provides the physical resources (processors

and storage) upon which the virtual machine is constructed.

The remainder of this chapter will describe the level of

virtualization (or layer of abstraction) created by each

distributed kernel module.

1. Inner Traffic Controller Module

[Level-i of this virtual machine is the Inner Traffic

Controller Module. This module creates a set of virtual

processors with the extended instruction set: SIGNAL, WAIT,

SWAPVDBR, IDLE, SET VPREEMPT, TESTVPEEMPT, and

RUNNI NGVP.

44

DISTRIBUTED KERNEL

Supervisor

Kernel Level 3

GATEKEEPER

CONTOLLE 1EMN

Level 2

TRAFFIC

CONTROLLER

Level 0

[CPUMU

Figure 7

45

SIGNAL and WAIT provide an interprocessor

communication mechanism used within the kernel to provide

multiprogramming. These instructions invoke the level-1

schedulinw procedure, GETWORK, which multiplexes virtual

processors on a physical processor.

SWAPVDDR and IDLE are instructions invoked from

level-2 by the Traffic Controller Module to schedule

processes on a virtual processor.

ST_VPREEMPT and TESTVPREEMPT create a virtual

processor interrupt mechanism. SET VPREEMPT is invoked from

level-? when the traffic controller desires to load a new

process on a virtual processor that is not scheduled.

TEST VPREEMPT is invoked by the Gatekeeper of each

distributed process upon every exit from the kernel domain.

The Gatekeeper unmasks virtual interrupts by testine the

interrupt flag of the scheduled virtual processor. If the

flai is set, a virtual interrupt handler is invoked,

otherwise the process enters the supervisor domain normally.

RUNNING VP is invoked from level-2 to provide the

Traffic Controller with the identity of the currently

scheduled virtual processor. The identity of a particular

processor must be known in the virtual environment, just as

the identity of a physical processor is required in a

multiprocessor system.

46

2. Traffic Controller Module

The Traffic Controller resides at level-2. It

manages the scheduling of processes cn virtual processors by

invoking the extended instructions of the virtual processors

in level-i. In addition to implementing the level-2

schedulinp algorithm, the Traffic Controller creates the

extended instruction set: ADVANCE, AWAIT, and PROCESSCLASS.

ADVANCE and AWAIT are used to implement eventcounts

and sequencers [ii, an inter-processor communication (IPC)

mechanism invoked by the supervisor. Although SIGNAL and

WAIT provided an adequate Interprocessor synchronization

mechanism within kernel, Parks [2] determined that

supervisor process synchronization would be more effectively

served in the secure environment of SASS by the use of

eventcounts.

PROCESS-CLASS is invoked from level-3. It returns

the label, subject access class, of the current process for

determining a subject-object relation.

a. Scheduling

Scheduling functions are divided between the

Inner Traffic Controller and the Traffic Controller. The

Inner Traffic Controller multiplexes virtual processors on a

CPU. The Traffic Controller schedules processes on virtual

processors.

The division of the scheduling algorithm between

these two levels simplifies its design, because it seperates

47

_ _ _ _ _

the issues of virtual processor management

(multiprogramming) from virtual memory management [123. A

design choice was made to provide each system CPU with a

small fixed set of virtual processors. Since the virtual

processor data base is shared by all system CPU's, it trust

remain permaently in global memory.

The process data base, used to implement level-2

schedul.'ng will be much larger. Since supervisor processors

are known to the entire system, this data must also be kept

in global memory. Because level-2 is subject to merory

management, this data could be kept on secondary storave and

moved to primary memory when requested.

SASS does not provide dynamic memory management,

therefore the two-level scheduling design presented here is

not essential to the design. However, the structure has bee

provided in this implementation to support more complex

family members of the O'Connell-Richardson design. Figure 8

illustrates the two levels of scheduling employed by the

distributed kernel.

The two virtual processors (Mem_Mr_VP and

Idle VP in Figure 8) are permanently bound to kernel

processes and are not in contention for process scheduling.

The remaining VP's are temporarily bound tc supervisor

processes as determined by the Traffic Controller. If no

supervisor process is available, the Traffic Controller

4e

invokes the Inner Traffic Controller (IDLx.) which loads an

Idle process on the virtual processor.

The Inner Traffic Controller schplules virtual

processors on the physical processor. Ready virtual

processors with temporarily bound idle processes ("vP #1 and

VP #2 in Figure 8) will be scheduled only to give an Idle

process away for a supervisor process (i.e., when virtual

preempt flae is set). The Idle process will actually run

when the virtual processor to which it is permanently bound

(the Idle-VP in Figure 9) is scheduled. This will happen

only when all other VP's are waiting or temporarily bound to

Idle processes, i.e., when there is no useful work for the

CPU.

49

.I _ _ _ _ _ _ _ _

TWO-LEVEL SCHEDULING

BLOCKED READY

RUNNING

LEVEL 2

LEVEL 1

1MR IDLE

PROCESSPRCS

WAITING RUNNING READY

MEM 2 IDLE VP VP
MGR VP#12VP #

LEVEL 0 1

CPU

Figure 8

50

Non-riscretonary Security Module

The Non-Discretionary Security module in level-3

reflects the system's security policy. It compares two

labels, subject and object access classses, passed to it by

other modules, and returns the relationship of the labels

based on a lattice structure known to it. To perform this

function it provides the extended instruction, F:I.ATION,

which is used by the Event Manager and the Segment Manager

to determine access permission. These modules make decisions

about access based on the relationships: equal, less than,

greater than, and not related. The Non-discretionary

Security module is the only module which Interprets the

labels themselves. A different security policy (e.g.,

Privacy Act vs BOB) can be implemented simply by chanzine

the lattice structure used in this module.

4. Event Manager Module

The Event Manager is a level-3 module invoked by

supervisor processes via the gatekeeper. This module creptes

a set of extended instructions: ArVANCE, A74AIT, REA: and

TICKET. It determines the access permission of desire!

interprocess communications and obtains a global handle from

a Memory Manager data base where event data is stared. If

access is permitted, the event manager passes this handle,

which identifies the event, to the Traffic Controller where

the appropriate event count instruction is invoked. For

sequencer operations the Memory Manager is invoked directly.

51

____ i

The use of the handle is necessary because of the design

choice to store event data in a data base of the Me, ory

Manager (3]. This insures that inter-domain IP" does not

violate SASS security policy.

5. Segment Manager Module

The Segment Manager also resides in level-3. This

module creates a set of extended instruc-tions for

nanipulating segments. These instructions are: CPYATE,

DELETT, SWAPIN, SWAPOUT, MAKEKNOWN, and TERMINATZ.

Modules of the supervisor domain invoke these instructions

to coordinate host support. CREATE and rELETE add and remove

segments from the system. SWAPIN and SWAPOUT cause a

segment to be moved between primary and secondary remory

(i.e., between a pa.ed disk and contigjous memory).

MAK -KNOWN and TERMINATE add and remove a segment from a

process address space.

6. Gatekeeper Module

The Gatexeeper exists on the boundary between the

kernel and supervisor domains. It provides the sole entry

point into the kernel domain, so when the execution point of

a process enters the kernel domain of its address space 1t

must do so through the Gatekeeper.

The hardware of the MMU partitions prcress address

spaces into two domains by setting the ring number %zero or

one) in each segment's

52

1

attribute resister. Software provided by the Satekeeper

performs the following additional functions:

Kernel Entry

1. Unmask Hardware interrupts.

2. Save supervisor domain registers.

3. Save supervisor stack pointer in kernel stack
segmer t.

4. Check arguments and invoke appropriate kernel
entry points.
(Virtual machine instructions).

Kernel Exit

1. Invoke TEST VPREEMPT

(i.e., umnask virtual interrupts).

2. Restore supervisor domain stack pointer.

3. Restore supervisor domain repisters.

4. Unmask hardware interrupts.

5. Return to process execution point in
in supervisor lomain.

C. REVIEW

This chapter has described the high level design of the

Secure Archval Storage System kernel from twc points of

view. In the process view the system is composed of pairs of

supervisor processes (an I/O Manager and a File Manager) for

53

-J

each host computer and a pair of kernel processes (a memory

Manager and an Idle process) for each real processor in the

system. The supervisor processes provide high level services

to host computers while the kernel processes control system

memory resources and provide a r idle system state.

Distributed kernel functions implement two levels of

scheduling, provide interprocessor synchronizaticn and

communication, manate segments, and isolate and proteM7 the

kernel domain of process address spaces. The distributed

kernel is constructed as a hierarchical virtual rachine.

Evidence of the versitility of the loop-free, configuration

independent structure of this design car be observed in

concurrent thesis work in this area [19]j. An Intel S_26

multiprocessor operatinoR system implementation, based on the

same design, uses essentially the same virtual insturction

set described in this chapter. An implementation of the

first two levels of this kernel machine is presented in the

next chapter.

54

IV. IMPLEMENTATION

Implementation of the distributed kernel was simplified

by the hierarchical structure of the design for it permitted

methodical bottom-up construction of a series of extended

machines. This approach was particularly useful in this

implementation since the bare machine, the ZEWC

Developmental Module, was provided with only a small amount

of software support.

A. rEVFIOPMF'NTAL SUPPORT

A, Zilog MCZ Developmental System provide! support in

developing ZF eC machine code. It provided floppy disk file

management, a text editor, a linker and a loader that

created an image of each ZEeee load module.

A Z80ee Developmental Module (DM) provided the necessary

hardware support for operation of a Z2ek2 non-segmented

microprocessor and 16K words (32K bytes) of dynaric RAM. It

included a clock, a USART, serial and parallel I/O support,

and a 2K PROM monitor.

The monitor provided access to processor repisters and

memory, single step and break point functions, basic I/O

functions, and a download/upload capability with the MCZ

system.

55

_ _ _ _ _

Since a segmented version of the processor was not

available for system development, sepmentation hardware was

simulated in software as an MMU image (see Figure 9).

Althourh this data structure did not provide the hardware

support (traps) required to protect segments of the kernel

domain, it preserved the general structure of the design.

MMUI MAGE

OFFSET ATTRIBUTES
Hich byte Low byte Size Attributes

seg

Figure 9

3. INNER TRAFFIC CONTROLLER

The Inner Traffic Controller runs on the bare machine to

create a virtual environment for the remainder of the

system. Only this module is dependent on the physical

processor configuration of the system. All higher levels see

only a set of rurning virtual processors. A kernel data

base, the Virtual Processor Table is used by the Inner

56

Traffic Controller to create the virtual ervironrrent of this

first level extended machine. A source listine of the Inner

Traffic Controller module Is contained in Appendix A.

h 1. Virtual Processor Table (VPT)

The VPT is a data structure of arrays and records

Lthat maintains the data used by the Inner Traffic Controller

to rultiplex virtual processors on a real processor and to

create the extended instruction set that controls virtual

processor operation (see Figure 10). There Is one table for

each physical processor in the system. Since this

implementation was for a uniprocessor system (the Zeeoe Mm'),

only one table was necessary.

Virtual Processor Tatle

LOCK
PUNNING LIST
PEADT LIST
FREE IIST

MS 1 M'SSAGZ I SENDER jNEXT MSCi

Figure 10

57

The table contains a LOCK which supports an

exclusion uechanism for a multiprocessor syster. It was

provided in this implementation only to preserve the

gpnerality of the design.

The Descriptor Base Register (DIR) binds a process

to a virtual processor. The DB R points to at MMU IWAGE

containing the list of descriptors for segments in the

process address space.

A virtual processor (V?) can be In ore of three

states: running,, ready, and waiting (figure 11'.

Virtual Processor States

VP

WAITI-NG-F

mP VP

FIGURE 11

56

A runninR VP is currently scheduled on a real processor. A

ready VP is ready to be scheduled when selected 1,y the

level-1 scheduling ailgorithm. A waitine VP is awaitinp a

message from some other VP to place it in the ready list. In

the meantime it is not in contention for the real processor.

2. level- Scheduling

Virtual processor state changes are initiated by the

inter-virtual-Drocessor communication mechanisms, SIGNAL and

WAIT. These level-1 instructions implement the scheduling

policy by determining what virtual processcr to bind to the

real processor. The actual binding and unbinding is

performed by a Processor switching mechanism called SWAP_DBR

[lei. Processor switchine implies that somehow the execution

point and address space of a new process are acquired ty the

processor. Care must be taken to insure that the old process

is saved and the new process loaded in an orderly ranner. A

solution to this problem, suggested by Saltzer [ICe], is to

design the switching mechanism so that it is a corrmon

procedure having the same segment number in every address

space.

In this implementation a processor register (R14)

was reserved within the switching irechanism for use as a

DM. Processor switching was performed by savine the old

execution point (i.e., processor repisters and flap control

word), loading the new DBR and then loading the new

execution point. The processor switch occurs at the instant

the DBR is changed (see figure 12). Because the switching

procedure is distributed in the sarne numbered segrent in all

address spaces, the "next" instruction at the instant of the

switch will have the same offset no matter what address

space the processor is in. This is the key to the proper

operation of SWAPDBR.

SWAP DBR
Process #1 Process V2

Address sDace Address spare
---------- ------------------------------

Call SWAP DBR

Save return point
on call stack.
(Precess #1)

Save execution point

Swap DP (R14) -- -Swap DR (?14)
* processor
* switch
* Load new execution

point.1

Load return pcint
from call stack
(process 92)

Fieure 12

avowNOW. .

To convert this switching mechanism to segmented

hardware It is necessary merely to replace SWAP_1PF witb

special I/O blcck-move instructions that save the contents

of the Mr'U in the appropriate MMUIMAGE and load the

contents of the new MMUIMAGZ into the MU.

a. Getwork

SWAPDBR is contained within an internal Inner

Traffic Controller procedure called GET.ORK. In addition to

multiplexing virtual processors on the CPU, GETWORZ

interprets the virtual processor status flags, IDIM and

PREEMPT, and modifies VP scheduling accordingly in an

attempt to keep the CPU busy doina, useful work.

There are actually two classes of idle processes

within the system. One class belons to the Traffic

Controller. Conceptually there is a ready level-2 idle

process for each virtual processor available to the Traffic

Controller for scheduling. When a running process blocks

itself, the Traffic Controller schedules the first ready

process. This will be an idle process If no supervisor

processes are in the ready list.

The second class of idle process exists in the

kernel. The kernel Idle process is permanently bound tc the

lowest priority virtual processor.

The distinction is made between these classes

because of the need to keep the CPU busy doing useful work

whenever possible. There is no need for GFTWORK to schedule

a level-2 idle process that has been loaded on a virtual

processor, because the idle process does no useful work. The

virtual processor IDLEFLAG indicates that a virtual

processor has been loaded with a level-2 idle process.

GETWORK will schedvle this virtual processor only if the

PREEMPT flap is also set. The PREEPT flaz is a signal from

the Traffic Controller that a supervisor process is now

ready to run.

When GETWORK can find no other ready virtual

processors with IDLE and PREEMPT flaes off, it will select

the virtual processor permanently bound to the kernel- Idle

process. Only then will the Ile process actually run on the

CPU.

Getwork contains two entry points. The first, a

normal entry, resets the preempt interrupt return flaF. (RZ

is reserved for this purpose within GETWORK.) The second, a

hardware interrupt entry point, contains an interrupt

handler which sets the preempt interrupt returr flag. The

DER (PO_) must also be set to the current value ty any

procedure that calls GETWORK in order to permit the SWAP DPR

portion of GETWORK to have access to the scheduled process's

62

I

address space. Upon completion of the processor switch,

GETWOPK examines the interrupt return flag to determine

whether a normal return or an interrupt return is required.

The hardware interrupt entry point in GETWORK

supports the technique used to initialize the system. Each

process address space contains a kernel domain stack segment

used by SHAP-DER in GETWORK to save and restore VP states.

For the same reason that SiAP-DBR is contained in a system

wide segment number, the stack segment In each process

address space will also have the same number (Se;went #1 It

this implementation). Each stack segment is initially

created as thoueh it's process had been previously preempted

by a hardware interrupt. This greatly- simplifies the

initialization of processes at system generation time. The

details of system initialization will be described later in

this chapter. It is important to note here, however, that

GETWORK must be able to determine whether it was invoked by

a hardware preempt interrupt or by a normal call, before it

can execute a return to the calling procedure. This is

because a hardware interrupt causes three items to te placed

on the system stack: the return location of the caller, the

flag control word, and the interrupt identifier, whereas a

normal call places only the return location on the stick.

Therefore, in order to clean up the stack, GETWORK mrust

63

execute an interrupt return (assembly instruction:IRETV if

entry was via the hardware preempt handler (i.e., 7e set).

This instruction will pop the three items off the stack and

return to the appropriate location. If the interrupt return

flag, Re, is off, a normal return is executed.

During normal operation, SWAP-DPR manipulates

process stacks to save the old VP state and load the new VP

state. This action proceeds as follows (figure 13):

1. The Flag Control Word (FCW) the Stack Pointer (15)
and the preempt return flag (RO.1 are saved in the old
VP's kernel stack.

2. The DBR (R14) is loaded with the new VP's DIR. This
permits access to the address space of the new process.

3. The Flag Control Word (FC'I), the Stack Pointer (R15)
and the Interrupt Return Flag (RO), are loaded into the
appropriate CPU reristers.

4. RO is tested. If it is set, GETWORK will execute an
interrupt return. If it is off, a normal return occurs.

64.

r

Kernel Stack Segments

Old VP Stack New VP Stack

SPtp RET ADDR RET ADDR j.S

SP: R15 SP: R1

IPET :P0 IRET:Re

FCW FCW

HEADER HEADER

FIGURE 13

By constructing GETWORK in this way. both system

initialization and normal operations can be handled in the

same way. A high level GETWORK algorithm is giver in figure

14.

3. Virtual Processor Instruction Set

The heart of the SASS schedulinp mechanism is the

internal procedure, GMTWORK. It provides a powerful internal

primitive for use by the virtual processors and greatly

simplifies the design of the virtual processor instruction

set. Virtual processor instructions perform three types of

functions: multiprogramming, process management and virtual

interrupts.

65

77.'

GETWORK Procedure (BBR =R1.4)

Begin

Reset Interrupt Return1 -ldg (Re)

Skip hardware preempt handler

PFardware Preempt Entry:
Set DDR
Save CPU registers
Save supervisor stack pointer

Set Interrupt Return Flag (RO)it Get first ready 7P
Do while not Select
If Idle flag is set then
If Preempt flag is set then
select

* else
get next ready VP

end if
else
select

end if
end do

SWAP DER:
Save old VP registers in stack segm~ent
Swap dbr (R14)
Load new VP registers in stack seement

If Interrupt Return Flag is set then
unlock VPT

simulate GATEKEEPER exit:
Call TST VPRE!YPT
Restore supervvisor registers
Restore supervvisor stack pointer

Execute Interrupt Return (IRYT)
end if

Execute normal return

end GETWORK

Figure 14

66

SIGrNAL and WAIT provide synchronization and

communication between virtual processors. They fr ultinlex

virtual processors on a CPU to provide multiprogramming.

This implementation used a version of the signal and wait

algorithms proposed by Saltzer (1]. In the SASS design each

CPU is provided with a unique (fixed) set of virtual

processors. The interaction among virtual processors is a

result of multiprogramming them on the real processor. Only

one virtual processor is able to access the VPT at a time

because of the use of the VFP IOCK (SPIN-LOCK) to provide

mutual exclusion. Therefore race and deadlock conditions

will not develop and the signal pending switch used by

Saltzer is not necessary.

This implementation also included message passing

mechamism not provided by Saltzer. The message slots

available for use by virtual processors arE initially

contained in a queue pointed to by FREE-LIST. When a message

is sent from one VP to another, a message slot is removed

from the free list and placed in a 7IO message queue

belonging to the VP receiving the message. The head of each

VP's messaee queue is pointed to by MSG-LIST. Each message

slot contains a ressage, thie ID of the sender, and a pointer

to the next message in the list (either the free list or the

VP message list.

67

IDLE and SWAPVDBR provide the Traffic Controller

with a means of scheduling processes on the running VF.

SET VPREEMPT and TEST VPREEMPT install a virtual

interrupt mechanism in each virtual processor. Then the

Traffic Controller determines that a virtual prccessor

should rive up its process because a higher priority process

is now ready, it sets the PREEMPT flag in that VP. Then,

even if an idle process is loaded on the VP, it will be

scheduled and will be loaded with the first ready process.

TestVPreempt is a virtual interrupt unmaskinr mechanism

which forces a process to examine the preempt flag each time

it exists from the kernel.

a. Wait

WAIT provides a means for a virtual processor to

move itself from the running state to the waitinF state when

it has no more work to do. It is invoked only for system

events that are always of short duration. It is supported by

three internal Procedures.

SPIN LOCK enables the running VP to gain control

of the Virtual Processor Table. This procedure is only

necessary in a multiprocessor environment. The running VP

will have to wait only a short amount of time to gain

control of the VPT. SPIN LOCK returrs when the VP has locked

thp VPT.

68

GETWORK loads the first elirible virtual

processor of the ready list on the real processor. Before

this procedure is invoked, the runninw VP is placed in the

ready state. Both ready and running VP's are members of a

FIFO queue. GETWORK selects the first VP in this ready list.

loads it on the CPU, and places it in the running state.

When GETWORK returns, the first VP of the queue will always

be running and the second will be the first VP in the ready

queue.

GETJFIRSTM.ESSAGE returns the first message of

the message list (also managed as a 7IFO queue) associated

with the running VP. The action taken ty WkIT is as follows:

69

WAIT Procedure (Returns: Msg, Sender Ir)

Begin

Lock VPT (call SPIN LOCK)

If message list empty (i.e., no work) Then
Move VP from RunninR to Waiting state
Schedule first eligible Ready VP (call GTWCFKV

end if

(NOTE: process suspended here until
it receives a signal and is
selected bu GETWORK.)

Get first message from message list

(call GETFIRSTMSG)

Unlock VPT

Return

end WAIT

If the running virtual processor calls WAIT and

there is a messave in its message list (placed there %hen

another VP signaled it) it will get the message and continue

to run. If the messae list is empty it will place itself in

the wait state, schedule the first ready virtual processor,

and move it to the running state. The virtual Drocessor will

remain in the waiting state until another running VP sends

it a messare (via SIGNAL). It will then move to the ready

list. Finally it will be selected by GETWOR, the next

instructions of WAIT will be executed. it will receive the

message for which it was waiting, and it will return to the

caller.

7

b. S inal

Messages are passed tetween virtual processors

by the instruction, SIGNAL, which uses four internal

procedures, SPIN-LOCK, ENTERMSGLIST. MA1_r_?ADT, and

GETWORK.

SPIN LOCK, as explained above insures that only

one virtual processor has control of the Virtual Processor

Table at a time.

ENTER_MSGLIST manages a FIFO message queue for

each virtual Processor and for free messapes. This queue is

of fixed maximum length because of the implementation

decision tc restrict the use of SIGNAL. A runnine 7F can

send no more than ore message (SIGNAL) before it receives a

reply (i.e., iAIT's for a message). Therefore if there are N

virtual processors per real processors, the message queue

length, L, is:

L =N-1

MAKEREADT me ges the virtual processor ready

queue. If a message is sent to a V? in the waitin, state,

MAKEREADT wakes it up (it places it in the ready state) and

enters it in the ready list. If a running VP signals a

waiting VP of higher priority, it will place Itself back in

the ready state and the higher priority VP will be selected.

The action taken by signal is as follows:

SIGNAL Procedure (Message, restinationVP)

Begin

lock VPT (call SPIN LOCK)

Send message (call ENTERMSGLIST)

If siRnaled VP is waitine Then
Wake it up and make it ready

(cali MAKE-READY)
end if

Put running VP in ready state.

Schedule first elgible ready VP
(call GETWORK)

Unlock VPT

Return (Success code)

End SIGNAL

c. SWAP_VDB?

SWAPmFlB contains the same processor switching

mechanism used in SWAPDBR, but applies it to a virtual

processor rather than a real processor. Switching is quite

simple in this virtual environment becausa both processor

execution point and address space are defined by the

Descriptor Base Register. SWAP_D3R is invoked tv the

Traffic Controller to load a new process on a virtual

processor in support of level-2 scheduling. It uses GETWORK

to control the associated level-i scheduline. The action

taken by SWAPVDPR is:

7?

SWAPVDBR Procedure (NewDIR)

Berin

Lock VPT (call SPIN-LOCK)

Load running VP with New-DER

Place running VP in ready state

Schedule first eligible ready VP
(call GETWORK)

Unlock VPT

Return

End SWAPVDPR

In this implementation one restriction is placed

upon the use of this Instruction. If a virtual processor's

message list contains at least one messaje, it can not rive

up its current DER. This problem is avoided as the natural

result of using SIGNAL and WAIT only for system events, and

"masking" preempts within the kernel. If this were

permitted, the messages would lose their context. (The

messages in a VP MSG LIST are actually intended for the

process loaded on the VP.)

d. IDLE

The IDLE instruction loads the Idle "A£P. on the

running virtual processor. Only virtual processors in

contention for process scheduling will be loaded by this

instruction. (The Traffic

73g

Controller is not even aware of virtual prccessors

permanently bound to kernel processes.)

IDLE has the same scheduling effect as

S'WAPVDBR, but it also sets the IDLE _FIAG on the scheduled

VP. The distinction is made between the Two cases because,

although the Traffic Controller must schedule an Idle

process on the VP if there are no other ready processes, the

Inner Traffic Controller does not wish to schedule an Idle

VP if there is an alternative. This would be a waste of

physical processor resources. The setting of the IDLE FLAG

by the Traffic Controller aids the Inner Traffic Controller

in makina, this scheduling decision. Loeically, there is an

idle process for each VP; actually the same address space

(DER) is used for all idle processes for the same CPU, since

only one will run at a time. As previously explained,

virtual processors loaded by this instruction will be

selected by GETWORK only to give the Idle process away .cr a

new process in response to a virtual preempt interrupt. The

action of IDLE is:

74

IT - U a.

"men

IDLE Procedure

Bezin

Lock VPT (call SPIN-LOCK)

Load runnine VP with Idle DBR

Set VP's IDLEFLAG

Place running VP in ready state

Schedule first elpible ready VP
(call GETWORK)

Unlock VPT

Peturn

End IDLE

e. SETVPREEMPT

SETVPREEMPT sets the preempt interrupt flag on

a specified virtual processor. This forces the virtual

processor into level-1 scheduling contention, even if it is

loaded with an Idle process. The instruction retrieves an

idle virtual processor in the same way a hardware preempt

retrieves an idle CPU by forcing the VP to be selected by

GETWORK. The only difference between the two cases is the

entry point used in GFTWORK. The action of SETVPREEMPT Is:

75

FI

SETFPREEMPT Procedure (7P)

Begin
Set VP's PREEMPT flag

If VP belongs to another CPU Then
send hardware interrupt

end if

Feturn

End SETVPREEMPT

Since the action is a safe sequence, no

deadlocks or race conditions will arise and no lock is

required on the VPT.

f. TEST3VPREEMPT

Within the kernel of a multiprocessor systerr all

process interrupts (which excludes system I/O interrupts)

are masked. If process interaction results in a virtual

preempt being sent to the running virtual processor by

another CPU, it will not be handled since GE T'iOR has

already been invoked. TESTFPR EMPT provides a virtual

preempt interrupt unmasking mechanism.

TESTVPREEMPT mimics the action of a physical

CPU when interrupts are unmasked. It forces the process

execution point back down into the kernel each time the

process attempts to leave the kernel domain, where the

preempt flag of the running VP is examined. If the flag is

76

off, TESTVPREEMPT returns and the execution point exits

through the Gatekeeper into the supervisor domain of the

process address space as described above. However, if the

PREEMPT flap is on, the TEST VPRTEMPT executes a virtual

interrupt handler located in the Traffic Controller. This

jump from the Inner Traffic Controller to the Traffic

Controller (TC PREEMPTHANDLER) is a close parallel to the

action of a CPT in response to a hardware interrupt, that is

a jump to an interrupt handler. The Traffic Cortroller

Preempt Handler forces level-2 and level-I scheduling to

proceed in the normal manner. The preempt handler forces the

Traffic Controller to examine the APT and to apply the

level-2 scheduling algorithm, TCGETJORK. if the AFT has

been changed since the last invocation of this scheduler, it

will be reflected in the scheduling selections. Eventually,

when the running VP's preempt flag is tested and found to be

reset, TEST VPREEMPT will return to the Gatekeeper where the

process execution point will finally make a normal exit into

its supervisor domain. TESTMEEMPT performs the following

action:

77

ii. .:-'

TESTVPRE3MPT Procedure

Begin

Do while running VP's PREEMPT flap is set
Peset PRPEW'PT flag
Call preempt handler

(call TCPREEMPTHANDLER)
End do

Return

End TEST VPREEMPI

C. TRAFFIC CONTP.OLLFR

The Traffic Controller runs in a virtual environrent

created by the Inner Traffic Controller. It sees a set of

running virtual processor instructions: S'dAP _7VBR, IZ.E,

SETVPREEYPT, and FUNNING_V?, and provides a scheduler,

TCGETWORK, which multiolexes processes on virtual

processors in response to process interaction. It also

creates a level-2 instruction set: ADVANCE, AWAIT, and

PROCESSCLASS, which is available for use by hiFher levels

of the design. The Traffic Controller uses a plobal data

base, the ACTIVE PROCESS TABLE to support its operation.

1. Active Process Table (APT)

The Active Process Table is a system-wide kernel

database containing entries for each supervvisor Drocess in

SASS (Figure 15). It is indexed by active process Ir.

78

1W

Active Process TableLoCK

RUNNING-LIST P?.OCESSID

VPID

READTI I STHEAD

DBR ACCESS-CLASS STATE NEXTAP EVENTCOUNT
F AN rI
INSTANCE

- ' _ ____ ____ ___ ____ ___ COUNT
AP

Index
41

Figure 15

The structure of the APT closely parallels that of the

Virtual Processor Table. It contains a LOCK to support the

implementation of a mutual exclusion mechanism, a

RUNNINGLIST, and a READYLISTHEAD. The Traffic Controller

is onlv concerned with virtual processors that can te loaded

with supervisor processes. Since two VP's are permanently

bound to kernel processes (the Memory Manager and the Idle

Process), they cannot be in contention for level-2

scheduline; the Traffic Controller is unaware of. their

existence; since there are a number of avallatle virtual

processors, the RUNNING-LIST was implemented as an array

indexed by VPID. The READTLIST_HEAD points to a FIFO queue

79

1- III Ill , * .

that includes both running and ready processes. The running

processes will be at the top of the ready list.

Because of their completely static nature, idle

processes require no entries in the APT. Logically, there is

an idle process at the end of the ready list for each 17

available to the Traffic Controller. If the ready list Is

empty, TCGETVORK loads one of these "virtual" idle

processes by calling IDLE, and enters a reserved identifier,

#IDLE, in the appropriate RUNNING-LIST entry. This

identifier is the only data concerning idle processes that

is contained in the APT. Idle process scheduling

considerations are moved down to level-i, because the Inner

Traffic Controller knows about physical processcrs, and can

optimize CPU use by scheduling idle processes only when

there is nothing else to do.

The subject access class, SCLASS, provides each

process with a label that is required by level-3 trodules to

enforce, the SASS non-discretionary security policy.

2. level-2 Scheduling

Above the Traffic Controller, SASS appears as a

collection of processes in one of the three states: running,

ready, or blocked. Running and ready states are analoeous to

the corresponding virtual processor states of the Inner

Traffic Controller. However, because of the use of

so

~ -

eventcount synchronization mechanisms by the Traffic

Controller, the blocked state has a slightly different

connotation than the VP waiting state.

Blocked processes are waiting for the occurrence of

a non-systemr event, e.g., the event occurrence ray be

signalled from the supervisor domain. When a specific event

happens, all of the blocked processes that were awaiting

that event are awakened and placed in the ready state. This

broadcast feature of event occurrence is more powerful than

the message passing mechanism of SIGNAL, which must be

directed at a single recipient.

:ust as SIGNAL and WAIT provide virtual processor

multiplixino in level-i, the eventcount functions, AfVANCE

and AWAIT, control process scheduling in level-2.

a. TCGTTWORK

level-2 scheduling is implemented in the

internal Traffic Controller procedure, TCGETWORK. This

procedure is invoked by eventcount functions when a process

state change may have occurred. It loads the first ready

process on the currently scheduled VP (i.e., the virtual

processor that has been scheduled at level-i and is

currently executing on the CPU).

81

TC GETWORK Procedure

lezin

VP ID := RUNNING VP

Do while not end of ready list
if process Is running then
get next ready process
else
RNNING LIST [VP_ID] := PROCESSI,
Process state := running
SWAP VDBR

end i?
end do

If end of running list (no ready processes) Then
RUNNING-LIST := #IDLE
IDLE

end if

Peturn

End TC GETWORK

A source listing of TCGETWORK is contained in

Appendix B.

b. TCPREEMPTHANDLER

Preempt interrupts are masked while a process is

executing in the kernel domain. As the process leaves the

kernel, the gatekeeper unmasks this virtual irterrupt by

invoking TEST_',VREIMPT. This instruction tests the scheduled

VP's PREEMPT flag. If this flag is off, the process returns

to the Gatekeeper and exits from the kernel; but if the flag

is set, TEST-VPREEMPT calls the Traffic Controller's virtual

preempt interrupt handler, TCPREEMPTHANI)LER. This handler

82

invokes TC GETIORK, which re-evaluates level-2 scheduling.

Eventually, when the schedulers have completed their

functions, the handler will return control to the preempted

process, which will return to te Gatekeeper for a normal

exit. This sequence of events closely parallels the action

of a hardware interrupt, but in the environment of a virtual

processor rather than a CPU. The virtualization of

interrupts provides the ability for one virtual processor to

interrupt execution of another that may, or may not, be

running on a CPU at that time. This Is provided without

disruptine the lopical structure of the system. This

capability is particularly useful in a multiprocessor

environment where the target virtual processor :sy be

executing on another CPU. Because these interrupts will be

virtualized, the operatinR system will retain control of the

system. The action of the TCPREEMPTHANDLER is described in

the procedure below. A source listing is contained in

Appendix B.

83

TCPREEMPTHANDLER Procedure

Begin

Call WAITLOCK

VPID := R!TNNINGVP

ProcessID := RUNNING LIST [VPID]

If process is not Idle Then
Process state := ready
end if

Call TCGETWOPK

Call WAITUNLOCK

RETURN

End TCPREEMPTHANDLER

WAIT-LOCK and WAIT_UMLOCK providp an exclusion

mechanism which prevents simultaneous multiple use of the

APT in a multiprocessor configuration. This mechanism

invokes WAIT and SIGNAL of the Inner Traffic Controller.

3. Eventcounts

An eventcount is a non-decreasing Integer

associated with a global object called an event [II]. The

Event Manager, a level-3 module, controls access to event

data when required and provides the Traffic Controller with

a HANDLE, an INSTANCE, and a COUNT. The values for all

eventcounts (and sequencers) are maintained at the Memory

Manager level and are accessed by calls to the Merory

Manaper. The HANDLE provides the traffic controller with an

64

event ID, associated with a partipular segment. INSTANCE is

a more specific definition of the event. For example, each

SASS supervisor segment has two eventcounts associated with

it, a INSTANCE_1 and a INSTANCE_2, that the supervisor uses

keep track of read and write access to the sement [2].

Eventcounts provide information concerning system-wide

events. They are manipulated by the Traffic Controller

functions ADVANCE and AWAIT and by the Memory Manager

functions, READ and TICKET. A proposed high level design for

ADVANCE and AWAIT is provided in Appendix C.

a. Advance

A7vANCE signals the occurrence of an event

(e.g., a read access to a particular supervisor segment).

The value of the eventcount is the number of ArVANCE

operations that have been performed on it. When an event is

advanced, the fact must be broadcast to all tlocked

processes awaiting it and the process must be awakened and

placed on the ready list. Some of the newly awakened

processes may have a higher priority than some of the

running processes. In this case a virtual preempt,

SETVPREEMPT (VP_ID), must be sent to the virtual processors

loaded with these lower priority processes.

85w~ !

b. Await

When a process desired to block itself until

a particular event occurs, it invokes AWAIT. This procedure

returns to the callinR process when a specified eventcount

is reached. Its function is similar to WAIT.

c. Read

REAr returns the current value of the

eventcount. This is an Event Manager (level three) function.

This module calls the Memory Manager module to obtain the

eventcount value.

d. Ticket

TICKET provides a complete time-ordering of

possibly concurrent events. It uses a non-decreasing

integer, called a sequencer, which is also associated with

each supervisor segment. As with READ, this is an Event

Manager function that calls the Memory Manager to access the

sequencer value. Each invocation of TICKET increments the

value of the sequencer and returns it to the caller. Two

different uses of ticket will return two different values,

corresponding to the order in which the calls were made.

D. SYSTEM INITIALIZATION

Because the Inner Traffic Controller'. scheduler,

GETORK, can accommodate both normal calls and hardware

- @

interrupt jumps, the problem of system initialization is not

difficult.

* When SASS is first started at level-i, the Idle VP is

running and the memory manager VP, which has the highest

priority, is the first ready virtual processor in the ready

list. All VP's available to the Traffic Controller for

level-2 schedlinF are ready. Their IDLE FLAG's and PPEEMPT

flags are set.

At level-2, all VP's are loaded with idle processes and

all supervisor processes are ready.

The kernel stack seement of each process is initialized

to appear as if it had been saved by a hardware Preempt

interrupt (Fioure 16).

87

Initialized Stack

Stack Segment

SP- su stack Ptr

R15

fl14'. DZR

Ri
tnt ID

sup FCW

process entry
stack bas e

ker stack ptr

IRET FLAG

ker FCW

header

Figure 16

All CPT registers and the supervisor stack pointer are

stored on the stack. R15 is reserved as the kernel stack

point; R14 contains the DBR. All other registers can be used

to pass initial parameters to the process. The order in

which these registers appear on the stack supports the Z/ASM

block-move instructions.

The status block contains the current value of the stack

pointer, R15, and the preempt interrupt return flag. This

flag is set to Indicate that the process hds been saved by a

88

preempt interrupt. The first three items on the stack: the

process entry point, the initial process flag control word,

and an interrupt indentifier, are also initialized to

support the action of a hardware interrupt.

To start-up the system, R14 (the DBR) is set to the Idle

process DBR; the CPU Program counter Is assigned the

PREMPTENTRY point in GETWORK; the CPU Flag Control Word

(FCW) is initialized for the kernel domain; and the CPU is

started. Because the IdleVP is the lowest priority VP in

the system, it will place itself back in the ready state and

move the Memory Manager in the running state. The Memory

Manaper will execute an interrupt return because the

interrupt return flag was set by system initialization.

There will be no Work for this kernel process so it will

call WAIT to place itself in the waiting state. The next

ready VP is idling, but since it's IDIEFLAG and PREEMPT

flag are set, GETWORK will select it. It too will execute an

interrupt return, but because its PREEMPT flag is set, it

will call TCPREEMPT HANDLER. This will cause the first

ready process to be scheduled. Each time a supervisor

process blocks itself, the next idle VP will be selected and

the sequerce will be repeated.

The action described above is in accord with normal

operation of the system. The only unique features of

89

initialization are the entry point (PREEMPT-ENTRT: in

GETWOP!) and the values in the initialized kernel stack.

The implementation presented in this thesis has been run

on a Z8000 developmental module. System initialization has

been tested and executes correctly. At the current level of

implementation, no process multiplexine function is

available. There is no provision for unlocking the APT after

an initialized process has been loaded as a result, a call

to the Traffic Ccntorller (viz., ADVANCE or AWAIT). In a

process multiplexed environment this would cause a system

deadlock. Once the process left the kernel dorair with a

locked APT, no process would be able to unlock it. The

Traffic Controller must handle this system initialization

problem.

V. CONCLTSION

The implementation presented in this thesis created a

security kernel monitor that runs on the Z eee Developmental

Module. This monitor supports multiprogramming and precess

manapement in a distributed operatine system. The process

executes in a multiple virtual processor environrrert which

is Independent.of the CPU configuration.

This monitor was designed specifically to support the

Secure Archival Storape Syster, (SASS) [1, 2, 3]. Rowever,

the i vplementation is based on a family of Operating Systems

[4] designed with a primary goal of providirn multilevel

security of information. Although the monitor currently runs

on a sinele microprocessor system, the implementation fully

supports a multiprocessor design.

A. RECOMMENDATIONS

2ecause the Zilog MMU is not yet available for the Z eL0

Developmental Module, it was necesary to simulate the

segmentation hardware. As explained in Chapter IV, this was

accomplished by reserving a CPU register, R14, as a

Descriptor Ease Register (DER) to provide a link to the

loaded addresss space. When the MMU becomes available, this

simulation must be removed. This can be done in two steps.
91 '

I

First, the addressing format must be translated to the

segmented form. This requires no system redesien.

Second, the switching mechanism most be modified to

accomodated to use the MMU. This can be done by modifyinp

the SWAPDBR portion of GETWORK to multiplex the MVUIMAGE

onto the MMU hardware and this can be accomplished by

changing about a dozen lines of the existing code.

B. FOlLOW ON WORK

Although the monitor appears to execute correctly, it

has not been rigorously tested. Before higher levels of the

system are added, it is essential that the monitor be highly

reliable. Therefcre a formal test and evaluation plan should

be developed.

Ar automated system generaticn and initialization

mechanism is also required if the monitor to be is a useful

tool in the development of higher levels of the design.

Once the monitor has been proven reliable and can be

loaded easily, work on the implementation of the Venory

Manaper kernel process and the remainder of the kernel can

continue.

92

APPENDIX A
0j~ M

z- P4E-
0- V40Aa

C.)9 ."awC3 C.> 04
0-4-4I- 00. 14

W m0 14C 4P -
Q 00 =

M04 a:0~' tn

b- m rm 04 3 .

43 PC. a 044bd

0 =a-i* 01'4cn

C- "a = 0 - * W V-0 N

~-4-40 1 0 .- ~ -4 *-

=) 4 -- w 44 pa =

cn)S 04 0 g'~i~ *
E"0 04MV4 &4-4 a~

E-O-4 o-.03 f -e M = -
M~ o 0 6--4 wM0- "2 *n pa

N m4 pq AZ 0 gncnE 0 o

o ~ 4 -4 o-4 W4C.>' 0H f4.4

a-a 14044 14C.n 0 104 04fo

AM4. 2~ 14m =- W4 -40 M I

a-, E-1 C-3 04 w4 0.14 4
2~ ~ C.) Q-4 0P4 ad~IC) lo 6C.

4

E- M 0Zj. 4 C-44~' E*E=u = W E4 0 2
.0 -= 4 C- -m r-4COC pa * 1. *n I I 01

P4 Va. P4 - 0 d 02 4 E4 AEUE414t E-)~ 4

14 :N pq o 1w~ *4 w 4w*. *
ral V) 044 C- 1 4

pq0 b .4 6- - 4 - - .

r- p-a mg-

P4 W- :a 4O~ .4C~ 441f C3 PQ 4eO w4Jtd * c
E-4 N WE-4W A-4 E-P' U =

CfO

-4

93

64ii 11 1C

*0

0 0 0. ', C-0P
*4 04P qPQ0 o

U3 cn c I c Ir4 I w1

1.4-44 4 4.

v4 x. V. 4 E- C. *.4 r*.

wn w

19 A

in P1 0 0 (14 ON PQ "o =..

a pa 044U No NwH-4~
0-40 I q pe (0 0 9- '-obe

E04~? P4b~~.0 14.
Ir'P.~ 4 =1 1 Z 11 11 E-

*0 hi0c P~4 4 60i P .0s.. .P

E~~ ~ ~ ~ PoAUU.1- -261E

cn CAw P404 ; M 3 X E4

94&

04pqC
En6=

Pq m P0

M . N.3 C
A000000.Mm

Q ~ ~~ cj6- -4 n

m) 0 04 Ul0 qo n 4b
s-00 E-M0 pa c

60 w p 14 0

M, E- Q 03 M En ..4

cn Q E- 0W

0 4 C.1 PR. E p -

C4 P 4 " - r.

0 0 =

u. 0 C

V.a u. 0

N pq
0~l 4 M.

pq I~k po 0.
'44 P4M 6-4 -4 p

U)U EE
pq tn m

95 _ _ _ _ _

AD-AO91 092 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 9/2

AN IMPLE14ENTATION OF MULTIPROGRAMMING AND PROCESS MANAGEMENT FO-'.ETC(U)

UNLSIIDJUN 80 S L REITZ N

2N AS E

11111j 11.

'11111L 5 L

4 4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

O04dA4

op

-4
C42
1-4*

"~4 Iw aI
Q - ird pa

14 0 0 M
*4 C.OAWa 4 A4po

4

4M 4

'.4 IA.9-

--I --- - - - -- -0

* 0 * z =Z0*-4b
to 04 * 040 '-0 4 2* C>

coo* MIO0 -4x~o* C, 0
*N to2 U1C4N P4 3 3 (124 *d dg -8

or=1 ta0-z- osQ 1* P4 * 1
Pd CD* 0g0 -C4* 1 00 14

as * fr Af0- Ad 4 lm 94 i4 1ou 4 U) 4
*"4*ffoC)D 3 I.2-POE40N id 4 $", a~ I 4
*14 W*0-404 b ZC-SC)14 0 44 ca 00

C2 ad* 0 0 404 w * 44 M M14
*S4*03p P 4040 0R~~ 14 u E = 4 am 4 4
PC Q P3 E2-6q g-Cl(2Z -g o4I 64o gE 0 r4

P* D& .* P4~ U3 - .. as Z1P c a4 N-ft ca 64
94 0 uim* (124. -6.4 X. *. A4 .. 1414 ta

* 04 Po* .49 tV-4 4 Q q-4N~lQ CY)V D M0 4 W4.0 540
1 44 *0C-0040 C 0000* 3 C 04 ;4 04 o04

u2 * *9 =* P4 a
** ca - a bol a a MA

Z 4 Is u 4 Vi M
hj * d -04 W. 4 -a Oi

L54
zn

4"04
Q~Q~~4v~-4.4y~l4y4,1-4

rr L

Q *
414*
-IN"~~~~~~ vo **Q4 o C00 "OI-O

* * 4(D U* * ** *

04 If q-
v4 V-4v <0

97

04

z 64 2F
- . 0 2 h b-

04 bid~

4 ra q . 4 0 4 zh

V3 P4 C02 a 0 "a
cn 04 Q 0

P14 pgP4141
og-c c k2 -4 to W 4

C40. C o. N E4 "
14 P4 -OUX Ca E

.4 *- x)a U) M~ Z .4P

0 ZS ON 4 %04 u4 toC p94
C, M. mc 01 M 4 W4 .4 14N ul9- a 1s w

04 ca fm' enl s -4 P4 ca -. *4
po as .4 0. CA .04 iON$s fl

4 4'D & .1- F4u aCl- I=~~~ 0- .4n0
m i-4~ ze U p ; .4u A. D t w .4 140

ad= 4 3$4 4 0P~ a; 14 020J4E
04 I 4 V * 64 E-

0 4 Ir" . Y-4 - u . 4 u Z i g I Z D

e14o 1 14 0. 04 D o 1 6-M4 C2 C
4 w. -4 44 .4 ** " 0 w

N 02 at U) M T U2~(IL) ulU P p

a ~ c CD A P 41O4

Al P- inV-4CS I

S.... V -4 LeiU

P-.4 04 i
499-4 W4S 1.4 q- -O(
cpN4 4. MD I& ow

594 49 '4 CA

98

P44

04 z

as V4

rz P4 0
ra rA E0 9- 4

0q 04 I~ k 64Q 64E- 10

to C- CI 0.
Mag E- M 04 N PO 0 .4

C- 5g 4 0 P4 PAm P P eq
w4 ei * COl pa 04 00 P P

z 10 04 0 .0

64 * q 4 E4. - 54

P4 N 404 P4 04 N,- N540)
A A P4 u P" 4 0 P n~ p
" 0 0 - R 04 PIZ

54CN *- 0% N4. CI- C-45 c- C 0 ww
-4* 9- -49 4 "o9 4 "t f . V4 .4" 4 44" V44&0 V54q 94 145 .4 V44"V -

P4 ~)P

P4'lC 4 a as am as a

El. c 49 -1 P4 04- 4 %PQ0 (04 DW4
a40 a4 m 491 -4 04 5 P4

"4CJU) u 0 514 W0 04MM 040- 4 54 4
4 a, 04 N4 0 4 0.0r 4 -1 in toin

w*00 c* 4 040 44'CP
Ir v ~ ~ O co W4 0.0 %a - q4

& 4D aO wa a m so4 is Ma M*
-9 mos a -as U9 M0

II 99

C034 --

Jo 4 V) 4 ag 0A

r.mP. U2 4 4 .4 .

4 m4 a$0 = o *AA

04 r z 4

0 .-. C4c
DO to C4~ so w

r404 ~". .4 as

MW 04 rr A o paP~ A 34s
s3pme om *4 4 PC 4 .

P4 6-4P P4.4 342
ZU A. 4. 0Zu 0 aad Mpa

;a $ 144 s- 4 M 4 M 3b4 4 ll ad A

I.-$ a6a 4 P4 M W4O.- M4 CQpq6 4t-

Ots " C.) 6 44 -4 wM4 U) 0 0-4

$0 "44 ~.3P4 = 2-2 ad too 4 n

w.~ mom AP on- U) 04 lb m "3 0 :f W4.l

m Q C- ca. *)4 3 E- 04 C.) i lA 04 = Ole # COof- 0 04 0040 04 as

P4 .4 t0-4 &).4 Ca A 2 PO t;e O
ta4 1-4Z m~ *1.4O No 4 N 4 m n -

2 ~ ~ 6 3c14. *Ad U)U A *(.) A. Q) 54

1-4 at 4Z 04

.4 & 04 04"

"0~~ ~ ~ "4 9-1 V4 "I V- UW4V4W- - V4"N

ob NV) m in O94 04 tSsf"I
to to 10S a ,-4 04 it t
Q. 0fl AS)m 49N 4 q-4 10

o %0o 0- e- C4

-~ Q to ims M e

100

C0

z 04
12 0

C- 034

9pa 04 0

9M N4 =a0Z
04 ~04 4

CD 0

94 24 04 4 r

* . AI 914A Cl 44M 84 4 ~33 Og 004 me44N ac 4 ft
C) P44 .144 X o - 4 Ad c t

pah 4 -4 R N4 E- pa
MOE OOQN W=0 N4r ael

-A' 44 MN E- Q 4 4 14M .4 w 0 n
M 1M A p 4C N .N 0 .-44;P04 04 a =r)04z0 a p *4 N P.C 0 .14 0 ca Z4~

M 4a 004t P''- A 0 - * -q f a 4

o 0: - E-4 9b44 E-)90 0 Nc C4 agag ,
o 4 -30 u04 pa 0 0

A 0:1. 94. E94 1-40

as 0. U3 04 03 O3a
p 4 W = as. - 0 14 a 04.- f EI

a ' 0 . N V 460 V 9- 0 0)5~ N M~ 460 E - w 0 -Nt

4D P3.4 D 0 to 0

IQ4 MP~ 04 A 0l- & C- A

W~' 5, 0 .4 Y 0 0.- OIC' j
aS aNI 4 446V 404

Ie s 424 toe 409 Of

101

14

P4

P4

03 -

P4 -

P4 04 0: c

U2 u 1

PO E .= 4 W P4 E4 *

04A 4 ad C0 4
P4 0

'-4- PP4

0oQt-Q49V n in 0
1w40 10 ini0 n n

P4 P 4941

%-4 V- u in
b.04 N ~ to co 4c

44 p on 4 pa P4

102

* o P4 ne * E-*t
rm D 3M 4 14P 1* =

*0.. 1 * 0 4$ - 1 S J- * P
2cC4 k* Pa 3=4q. l~r *E-0

* -(= * *A C4 0d "-4L4 1I4t q0
u0 A.. =- 4A aE4En E4 P

* as- &$* 30-A 4 z &6*
V)c *D A . 0o Lo u* a 4 4-

*4 * X .. * E &4 * 4ul 0
W, "4 ca. 0 .. 04"a

Pa 34 a 494 *C n* s340 0 4 0 01

*Z34 *V2:0~ F.Z 4 0904-4 A
~4 0~fr;a45 = iV.1 P4 04 1-0 C1 6

C.)Z U tf3 54) 04 ca V.1 00 E

P.OE~~C V.a n~~NVi -V A. UE
* ~ ~ ~ ~ ~ ~ ~ ~ a 0 494~~~~o -e.ZA..4 Z 3

*UcaV. U U PRO -I &14 *Z ~ pq~ 4

U34.P*4 E .1* I M) * 0.1
* ~ 4* U~ * ** * ~** * 0 0~ * 4,4E *

*#fl *0 0 0 0 00 - i 0 . 5

oQ iU)0.'041 C
is. 6 g* 54 al .4

34 0 n 4f4i

U) to 0) CDc

94 3 4 o - 4

W 0o c .

pq ~~~o. -q c UwcaAA
a ab 4 94 D4 I
Is1 49 CDC t b

310

zP4 (ad

0 C14 toP

Ad - to- 14 M 0
0 V " 4 LA3 LA I-' lo *o4 enA 4~ 104"9 r4 E- 14 20 0
4 '-_, C-4.0 i 4 Nl 0A W c

= 3 d L .4 04 0-4 - P4
6-40 asp l x EP4 A 8 0 1 1

,- J= Pao U3 0 L64 .4 E4 1-4
14 0 = L P- U3P pN OFN
LAL) aM I E n 0A. A 4 b-wI E- 1P4 14

0L 0 * -40 or ca "4I - 0 A
.4.. W~ 140 b4 xA A o C

I0 1~ 1)4 LA LA r. 040 14 1
000 C10 0-0S-4 0 P-6 La 1-4 L 20 0c 14i
.44 tAA 0-40 2.P404 a ; 94* x~ 4 toA* U3L fit ca
t02 xE w :w 0 o 0 t~a a 0ego .
LA.. 0 Ow - Pa u 04 04~ M 4 c- b .4M 4 C14 LA - -a x C4 C/)ad04 & 0 04 . LA14

x 04 atE1)inr A 4 - W)-o qt In r 14 0
P. ow 4 04 64 P4, pPt 4 P4 0 DoA

24 Ps P44 14 CYE4- 14 0
P4 paLA Cnor- 4 0- pa-4 4 ~ 14

z 04 0 C. 04 r64 04 11 si 2c -4
1-.4 U)r P4 -04 b4 IM P2

64 0 P4-A A 04P4

i-I P4 r"p 4 '.4 P4 .4 0)40
0e *4 FM4 ft - W4 W .4 U

me4 M P" is eD "4 4 "4 W4a

UN c in W) 04 OD 0 4T 0 M to m~ W)

W '4 PQ 04 Of 04 P4PP4 q" 40 Na P"
;o w s 0O SaD iC in .49a~ or~ to ID

m 0 4 " N 0 q4 A4 C Is 0C.1 to c I 44 w
04 P4 " N t N0 04~ CD 49 UI4 4 I" '.4 -
194 a as a wi *4M -- 4 ",-44v4 1-4 V- -4 4
mei a as a w to~ mCD w fa tbc aes6

104

" E- * r

ENE * 4 P * M 0

P1Jfl4 as ca P4 6
* S =)- a4P4 0 0* 01 a -o 0
4=~ ad E- o e C * C0 V
0U 1=1 P* 04E .taME* 0" is 0r

* = * R-I449 IE NM* 1-0 L)oP 64
*ZAf CA 04ENn-ra - 4E- * E- 12a P

X P4 ca OP P OP ag$toE o* *ZM Z E-916= 0
A 0 od PO. wom)4P -

* ~~~ ~ 0 2zau *l P u0a Nc~ 4 "4 Z
Ix 0 A P4 C0 4 z A44* "aN

A*0 :2 0. n - . . .6 .. .Z .0 *f00 .
P4 x Qc B- 0 10u-U4O "n 034 Ca 9. U* o zt
u 0C.)p a * 0 Mp 0 M 90)4 W 4 04 EOf ~~

0* 04 -4 4 U)4 ow *. *. 0 .* 2 0

L) M2~ .Pis 00 00 0 2 P:

0*~a E-4~ Po 4

1-4 134

*4 04 *

0

cm F 4 D94 91
49 14 P "GF

0.49Q .

34 " 4

i 00D

94C QN N to)4~
"494 V-4 P4

105a.4I9O

P4 fm

-4 0464 n

Io PA C- PO6- 4o

en~ -44 M00 I- -4

wO :14 P4 !0 cF4
IC4 ra4 to 64 04a a 1

E-o 0- 0 om- P" 0 4 54 0 14 94 c r
N. -4 6. m-~4 o "oU 0df - o6 OP

tob~ W :2 4.- 4T- 0) 4p
c~a a P4 -m-4ZE4 * .0 m
a:c po ;K W- E4 *n pa Pto9M

(P4 f 4 (

ra ta ~ AF4 "mE

. -to 14** C210 -41

no 0-4.4 o A 0a O

0 i4 - O4 1 4 D- UD 01 144C w n %-C YV 6W

P4 to co4
N 4.- 14 4 0. 4 -4

49 so c)P b4 to in io- P4 - 4
V- P 0 IU.- m I No F q 4P q4 00

106

04

m qc

-c E- .. C

Zc 14 tw
N 0, E*t -

:2 ow - 4 04 CA

ZU-I- A -4 E- - i

.4P4
144

pq 4

W C- W 1 MV4*& l D l6 0

14 P4"94M

04 A) (-4 A

104

P*4

0 - 2 *

* 0. to -0 &0 = I. pa 0 0

*34 PQ b4 04

P4P40 A* 04 *41. ft

** Aq A 4,.

A 4 * 4!wp 1* w pqx p

*ca 34 (a (A 04'.

cafa '4 1-4 *

M fr E-x -- e. -q to -

Z) i 404C 4pa9 -
94 P40 00

pa U) 019 A1P

caJ rru40t'0
0 (U4OAsO0Q

Po Go t3 alis

P4 0 -

-~ -n - Q - t1n

108

C4

0r 04

04 64 P

044

(40 40

0A -4 04 C4 (4 0

04 cn 04 U3
1-4 P4 E-4 E- 04.

~ . P4 0: U2 w .44 0
A4 1- 6-0 z 0 N2

- 0P46-4~ -- 04 1~- ho Iwo

0 0=QP 0 0. rU) PQr,
E-4 N- ad *4 44. M - pa C4 o4 6 NE-
N N:r.u P" 0q C6.4 N

* * 1414 o4 bM . E-
04~0 0414 04 4, ~ ~ 0

C 1-4 Z E4 En 0-4 "4 -. C4 0
04 *3 69Z 00 E444-4M

14 4 404.4Z '-. E-40 E-4 14
0rA 04-45. b-4 A4040

E-6 * M4 P% .0- 0 4 4404 N

00 4~ '-a -0 N 14

V) RN NM

IQ 04 0144 "4
0.4 .'(0

P4
0

19 W4 M ti4') V toL- (7 CD94 N~ 0.) 40 W) VQ 0- CD 0) a ,-4 NI t'e in) W L- OD (7
40 40 1*4 wq fq 1& nt nI ot o0t o o 0 0

N we Q40 v ~ o wO 00 2 Mc
q-4 fq -45 Q P" paA W40M V-1

* 5,4. .Q W4 P04 4 -1 Q -1 -1 4

a. as4 hoP. a4 :4 42 MOM4

M v0W 0 vwt WNS V3S~f .49
V4 go "0 0 Oft(a 1054
0) Poo4 N. .4 pqP4A P40 000

'.4 9-0.4 9-44 W" V44. q".4.4 " .4 .4
a am Mal Saf Ses 0e M

109

464

0404 4

m ~ .

04 Mq 064

pm V- 1114 .a

0A 0
E- a*0 zP

P4 Im
4 04 4

A P A

Fil

a -1cmLi W ov - o ma F4c t 1

04 P4 a 04

96444.14 44 644444

age as

4494110

P4 Aq

-4 ca '-4
x*Q

644

*P4 M * ma

o -4 A* M 2

froacP4* 'n U)= * 0 t
b 4I* M A 0 *4t4rA d3

0- *02 4* lo 4 Z w*o4p
Z * 0*q -4 4 " . *: -c

b4 *EO*b P4~ 0 asAE *
0P4 p"4 0 = 4m0 4 D c

o ~- * g 41 14 " 0 pa I*

14a d Mgao .4 hd* a"~n &4
04 u04Z *b4Z -0 r4P4).-a * ow:2FA0 049U)C

o4 104~ 04 &al'~ toP.u04 o
E0 pa *.4ogbd* A.1P~

*p4 e Z -4 * W A
1 '-4 04 * 4* Ad o 4 0 -P 1* n-0 U &

pq 4 *4 0: ZA~~4* 0 A 0
2c 0- 0 4 0 d*1P ~ P 0 .~n
2c LO 124 PS i4 ~a~.~ u-*~

ZQ .-2 9= O*- *0 iI*44

ca 0. ---1 4 -..
Zul P48.

a.1 0 . .4V 4
vo~~ v14 wvvv000 - o4i f ni

*0co in
~~4 V4.

O~ Q U~ W O -4494a

~00 ~ O ~ Q Q Q Q QQQ w-4e.

CD 4

ID

E4 04

cm 04 I 3

IH Q4 P4 6-
I- U3 .4.q k 4 4 64
m~ 1-4 Y q e 4 * 4 0 a* E- 0 4p

P4 -M n 4W -4 Z &4C 4

14 V3 P4 04 1- i4 P
um " V) 4y AW -0

p. *4 04 *4 - ~ A4 0

=at4 o* 4P 114 .40.4 to 04
14 P4 P- 0b4 3F m4 C4 "

= Q =4 t- P4 14 bd
p.0 04 44 a zO -0 04 M

2*. Mop m 44. 4

E-~ 4 ~ 04 E-
- . E- S-4

04 0.. C>I 04N -4N

P4 0 ob 4 Opob 900 t

= W. paPQ .

PQ ad

74u M 4 Q 404 P4 n W 4 V 40 M

M m 9 P4 toMO caU (Mm
mer ft4 46 MCJ .. 4 so4

CQ ~ ~ ~ ~ O V) q4P a aI - S to inP oSy P

ID 40 V r.Srso 4 aoMC-t) W 0p o o t

coo) '4M)M04SYto44 ri'ag) tvfo l P4 CQ
so4 W4 14 P. V-0 "4 Pm.C Y oV 9 4)

as sa a55 Q5 a o4 94 so a M
M5 Q 0 wasM 0 0 M W is is

12

0.

@2P4

040 V

M 2
@2 1 c t

P44
f*4 C @06 20

0 ag a 9-4

pq 0
@O

V -co al a41 N *4 r

@2 ID C

EE4 0- 1113

* 04
04 ~

- = IV a1- A

C,> *4 ca 014 -z 24P
*.4 * - 0 ca 64 U U3 s D .

*Zc *14 Id o* -IH 1 4'A00 1 fro 04pq
002= 04 0 44

4 2Axt DD *4 Id4 a.4.
= M* a-4 14 * ob 0: 2

lz * 14-4 b* Old 0 0. .0
P00* -0Q0 6 4O P4 * LL- u2 4 IQ 0) Vl

bd M 0 4 4- M 0 0 1.- a " 04
* 4 U)("d 0444 -" 044 P4 0 M.o b

* 0.1*q 0A 4 C4 0 "4C s94* U**2ct &0 I-
* 4 ga- 0 -4 P, U2ow 44 * 0 ta C U3* .4

ac IN* L6 E A.4 .4 ~ *hd C.1 _o -314 zo
44 bI gM 0. .40o44 0l0 0 ! 11- N A a.4.4 A

*M0 -*04 tD A t -4 C4* p N 4Az.9
P4 -4 - 9 4M 0 0 0 ad ;w~ ald~ *4 14 Do a 04Pl
0* .M* I.64 a*-I04
0* -- h* Po *.40*. "* C* M. 140o I--* 4

04 E-~4a.I 20 4 U) 04 en E-4A

14 A4 30

V4wNV0t .4 N 0 C.4 .a n 044 wt-)

in Nnni

W44 C4 P1 a

V00 a4 014 N

In Is a ao M

114

L -

14

Jo14 ag AM 4 & 4 a
P14 0 j a* 04-C

C2 .4P. P

.-. Z14 fa 49

04~j 6 - -4 C LL

ag 4 V 040
1 00 paV-43

04 bd

tm P14 4 0 0.0

4 4C~J0 04- 04~.
pa 041

04 u.4 Z 4
AA ~ ~ ~ P AV1. 44

CA 1.4 W.4 09 . M
CD W. -9 W t

GO M 4' t

CM kn 4 04 I CD C

&me' N a C

'.4 Al ao ci W

0 & c- C (0C

.4 N 46 is SO

115

fo

z 04 M

*2A * *) ulA
*0i4 * A m in04m

*UrA 0 *- 40
*4 * . * 04 Z U004

a" u. * P Dppa* pa0 P 04
of * ca 1464* 04I044 P
icc * * 4 04 a4 04
AM We *4 as m p 044

pa.. *b '-'i A 404 * ca P 4 - X N C
04 04 *4*L6 04 WoAs* &q W4 0.0

4 U at IH0 - P 4 w* (ma '- 4 0 C-4U.
04 2mn iAM4* 04 r4 04- 0 ^r

to 4 4g *4cn . go* oft A. M4 N/.0
Q ra 4 4 PC N0 as* F0 6-4 "Z m. Q 05

N* U3 C-4 040 * 0 0 M- 14.4
AK 44.~EP1 -4 0 P4 I4 124~ A 54 IN

~* IZg... *PaQ~ 04N 04-'4 00-4
PQ in04 '-.. Ca 3 0 * A M Zi.
z CJ*w4 4 "n 49 Za 104 04C

-0 JPat bpa. E-4 Do s
1*-44* 0 .- 4 *q in 0 ^-1 E..-

) t .4*0 V 4 -4N 4- 0 t

A4 P4 CD. 0404 004
M U r Q4 a: i04 4 Q 0

pa 04b to 0 t 3 5

P4 - m~ P4in 0
54 0 in 0 a4 9204

fit *0 PI m -4Vto p
N* P4 5

04 . V i

04

4D4

Im N404

Nq v--N a

Sm cu4 D ;P
(mv41 0oca
MOM. N9I

116

P"

5r4

* A * 64 4

* ZPa * 64*M . A S
0%i.4 * A A vlog 4d v - C ~

* q c.4 .4 pAq &G .4w as

*04 * z '111 4 04 Nbd o" 254
04 o 0 * Nop .4 4 x" * ci 0

*M * **o4 A -ePA 4 *4 a oD

*.4 C-*3D * 046 QA F4 IN 4X
rA O* F4 U qq 4-f 00 0I 0 a DID L6
9*.5~b4 I=454 0 - o Qt)d f s042 N "

A*A*-ad *0 " 0 0 4 $4izsl pp2 fag 9-p
0 = Oi A4C 0. = M =~ a
b4 JE-4* * 0- 4 P4 V -

P4~~~~ W G4 No M - - --- P0

PIP Pt

C-4 W n 0C v

4a4 ifPQA

"4IO"41OeaNV)

SOS

117 S

omm m 14 "

14 W." ta6 0
- v A .44 N P

m . A 4 &S
F.. Q 94 "%4

&0~'~ * - - 0 4

N 4 1 4 "4 Oka

d. 0.. ado
a@~ ~ I 4. .- 4.

~~U4 * P4 * . * I#

* im " u. 4

0. 50. M940 -

4- w 0 wr.

Mae0 0 a

CY ~ ~ 104a
-.. 4.4i- M ~ ca 0

we a a o
mow M so a a

118

A.IA

0 r4 64 -
A 0

-r CV X 4 -4

z~~~~I. 64P4- q)*41V4
--- A - - A A Do 04 ~ at x

*q pa * q 64* 4 .I
* * Ul C00 A0 94- 641

Do W4 * P43 t a 40 * *.. 64 0U) z A A
*Q 0. * 04"P At= * 0Z 1 = a oG A 64 A

=C- A* 04 F toP.4 z A) a-. up b D*4 C a
z0 *.0 6.4 x4 ** 64. 40 U a,

* a pa * to -4. 4 hd. 4' U2 to -.
*=4 a; " 4 4 0 6L) 0- C * * -1.i z 04

pq * M 0 0464 .4Z00* v ~ tw 64 FOO
A'')A W4..~ 0- zA. =i =-
* PEah*~ a"in P* a- ~
-~'~ - ~ ~ m4~ - - - - -A. -*'Ua A0

6Q 64 * iM . CJ~u 6- a-
*4 zU.*4 "0*s~ * r.

DIP 6.4M U)4*4 44*O*64 U) 56

*.
ca pa

m .0. 4b0Q(

Va N. V4W t

lase N oft 42 skto i

GC'. cm 0 M M' aU
Q~a a C2 U Q64m P

429 toa a is 0 . a
4b ts 4 ft" A IsM'IOP

119C~-f

o P., CA0

*4 Pq 04

E- A4 V-4
0 140 --

P4- 2 0 P
0 0 4 4 ca

0 ON P4 E-4 U
E- rr0 04 a 44

04 0- %4 11 m-
m pw I P4

* 20o A1~ ~ I
040 "a z4 4)

~. 04 -14 U)4

*~~~P 14 1 04 0 4
"4~ 4 104 504 0430 iI

~P4 00P4

94 Is 0

is 49

c m a

C4 %0 "4 u4 am

M pqN Fe 4 t

1 ~ 120

C- P4 - U

*4 0 E- * n n0
*6s4 0 * *. P42 iW

z E- P4 A 0 00p

E- P4 E- * 1 Nl C)0

X A 4 ow 0 * E- - *t
54 o4 E-4 * I* l g * U4)
*28- M " *A sE-E * x 0 N0

04= gP40 * pq pa4*P
*n- X4 04. A *. ,.v 0 4W.4 1 4 a:lit : q :
*-W.V * q a: O -* *o

F4 - C 0E- E- -44 . *0*
-4 14 AA C 0-.442 % 4

U2 0.4WA 1 * 0rI 1.1 PW fr. " ag 0
*a c U)n *.r4 :m 0:00P 4r4i 44 6

*q p~p4 P4 * 4 E- &* - A U) p
S"P C0ccnp C-5 4 r r

og1 PQ20 E- =1 040 N ZV4 14 W.4
pa ;z A4) *.*. 04 e -4L)

0*c0Z 4 , *4 r4 X 0 A*~ M.- 4 E-~p

E- M 4 04 PQ t - 4 04' 4 Ad
P4 -- 0 wa W4 En pp P

1- E- A4 As 04I O 14

.45 0.' E- 0-14 -~0
s .4 20 4 e- 4 CV CA 9 4 1Sh":m-

&4544 4 9z .0 0% PA
14 P4 0

fro 04 0C * U

E- a.- 5 ~ ~ ~ ~

S0

W4 V- G, q--C
1to W4 -

14 C1 . P

121

og

P4

4 -

E- *4 * A

P 4 e-P4 04 =

EU 4 04 4
Zb4 FA ~0 4 02
-~ 94 A4

P4 = 00 P4O.P. A4
I., E- 4 4 4 -

-4- -~44 =
x 04 6- 4ZCA 04 (

44 0 (a 4 04 (4
A p paP. E0 =-q .4 R4

P14514 94 P QE -C bd
P4 E- 4 (4

00. 404a .4 04 E-
x w 4 1= U2l Mb C3 54

wia . u- C)'.4 04
P(4E4 E-4 64 P 0 r

pr 04 cm 4 E- F 4
at~ DI " a r4 (4

PA12f A * s4 4
P4 (4 (4 U2

4 E-4 A 94 Ad E- PA

044

(00 000 O~~OPA

N - L- L- A4 9 M"- f c-

LD(0 ODG0DO 0U)0(()0()(4(
C-C4 % C l l- . -C - D %NC % -D

Go OD

it Is O

Pik SQ

w do. 5iMq
AS~C P. (

122

* 4 * Aq -I.u

*Z14C.)*4
*Oei O Pa C4 L 4 a6

04 1 U) U
b- * 1e.4.

04P4 : W -$qZ4 x d64a
Do A 0* 4 44 -4 4* u 4 M2

54 " P4 i4 04 1 p 4 4* 0 t C 04A
pq ~ cn m. 04 2q ow04w31 0 j
A 2 3 '*4 $-a - * 0* 0 rj
paC4 U d)*~ 4 04 1 . * E- 0 a -

**V4 ad24 M.4 4 4* 04 A z 54 n
P* A Z~ C-0 A.. P *s **** C *

0*4C31Z4r01$4 P4 E- -m

0* A,0 0 W W.- W*r -

* * S440.ral .E-4

P4 00
to 0 -40 0cbd o

1-4 A

2
2p

as
afONn0 0-MVw "pooWw mv-N ow

CY. N SY 0 t) V

94 W4

123

4

* PQ

04 M

ad M

40 MA
PQ E 0 4 Er

P4 Spq.4fp.

- .0 Z

*. P4 *s

ft~1 q- MV.

400

M 04q" D P A 4

tc 0404 cuw 44 P4

14

'.4

mm

=1 4 A u

9-4* * MO *- 1 b-

1-0 QQ * 22
* 4. P4 * g-P-0E4)-* E Ar~ om 4*

Q E- E* 04 U 4:* 0.5 0* -- -

=m A'* a. Q4~r V) ~5
u 0A4A Q2* 0; ra 09 ral P4 C43409

0 h NM-4A* as~54J5 a: 0

4 CA 4 P 4* 0.2A 0 04 1. 0: 04 0%
10 P4-*OU2 .J l ..4Mr

=PQ ~ A P4~-~E * 4b 0E U 4t

'IC).- 4* =O 0 C4& .4 = W
w * N P.4~ *q .. : zd *4i

3 b-4 c "E0 C-4 u 0.440-

pa* w (f0*5 * Q454 (
C-3* &4 i * 0 .1 * w ,. V3

Q~ 35&4 0.
440 P4

64 640 r=

2d U) 04E 64 04

0 b... &G 09

mom-.4 VO L.m,4
C L

al cj 0
~~4NCO in v4

V- C 4

CD S49 4

A-4 D ID o

ab~ ~ ~ to -l 0- ra cmP4

APPENDIX B

A a

04

If *1 If If 144 i

* -4 *~4'04 *~ i-I 04(

ui P4 0 nIn M Pp U a i

* "*0V 0 tw 1 -
(44 NW cb 0

W 04 0(4 t(1 -4 ta NO
u m4 E- FA bd 11-c 6. d9
= 40 m~ a - gi 6=k m 4 .4 iMPu (P
00 I-pa 04 11140 14,, P

0 01 :0 lhb.'- Ami 64M0 ulC4
pq C4Z 0: =z f (P 4c ca

14 11-ai 04Z ~ I 4

2- C24 to *IZ*~51

ca 1 * *. *
1 J P2 . 6 **

04 0% 14 0
1 .4 U 4 *>

C-4 94 CM * * *Ot O4 O14CI & -C 9" QV

9- Yc N N

o

42

Q)0

12

......

ca *iac49 10v4-
*a coO c *0

Oct, 0 0

CD 1 liit fr I T04 14 N
C 4 A .at *4 $:4 NJ

T- bk e W P,4 ar

~M C4 04A 4 3

I I w Z 4 Z = A 0 0

N cq N cm0t or

2 I~ilhIIIU i I127 i

pq 04

bo 040 D0 - - 0c

0000 2M.4 I p0ac

MIM adI I 0 40 al 033

00 04 04 4 o Ulm g0

04 Oq. -- m4 t -4C40- Or4 04 0 9 V
.4 M e 4 - 4 :04 04 VQQ 04c .)A M V

3 pq ad .4 W A
0 P4 46- r

= P4 34

4 P04 64 4 at0

4 Al v n L.4CD0 4 v- hV f9 0L-C C 0" M"')Wt

128

rH C

04 Vp
0~3 -444 -4 a

04

0~ 0 4 0ao -t

.4 C.N

CA 000 04

0 4 W4 *,.. MB1B4.0c -
0 00O0 I" I I

*1 0 4A " c 0 p4 £

Ad 0 U s a n I
asA 1 .4 1 P 14 d a 0

"w W -040 A 04 CO 0 4 0
u4 00 I 0 0 " 04 - 04

0hd .4, ca A .4Mo4 0 9

OU zn 4- E- - a
ta -4 04 4 FCobI 0..o 0 2

I.I it . 4 04 U) iNO

0 ~ ~ ~ ~ 4o 111-.4 AN~~wa

CD M49u4 WV) 0 W .40 -C 31 U4 CU4 0- W -t s .4N
C- O c c c 0 O D D)4 0 ~ 30 00V 0 al00 lC (o(o

I.... 40 .4
q-4Z IfZ i 14

CO~~~I (a4 3~*~C

.4 ~ N 04 O 129

C.) QZ
E0 C-0p

- - -0 P -C- - -9
to z* * I- %b. U3 *

* * 6 340 .* -4 pa pa6- P
*0 * ad0 4o a * A4 po- d4 Q"

PC C A * 4i1.a 0 -4 04 oe

4 Z *M1. ZV 0 ad o4 Ikfm
0* 0* PC..- * E- 0

04 ----- ft = :04 P.4 N4P.

I 04pas-

P44 N N
S04rP..M " 04 040

14 P

Q P44

0 2c

C0 F24S~ 44 0 40
(a P4.~ W4 M 9

a NN OCR 4N

42 4240 N CAis
V4 AH P4P4 42040

a 0(0 - V~f 41060.

M 0 480 M i49
a loo see ssts

130

4= 2

f4 -% 0

04 04 as 0

04 Wi 0/ &ON ---

.. e sw0 04 at U3 6:

paM 0~9P
04Z ad atg 4

2z a0 p425/ 9"- 4
itQ a 04 30

64 E- 00 C- E-14
04 ~ 45 .Qrtc 4 0i44 V4

5.4 0 64

-. 4.40 0 4

V.4
4

%M %

ON 4 04 14 o C.
P4 d A-44df V4 q9C

c
4

i a-4 '44i-Q v(20 is'4',c

M 04 4 6 q"AI 4 40 C4 4
rq t 0 04 A A 04 W P4A uV00
to PusS 04li 00055000 o o 3
W* r4 .tm W452!t 5V0 4 0 q t
61 a M.0Q 444 NM tol~c 4%I co q4Q

(aa 04 i NC aN t4'o. oatI

'4t~N NNNV) 6464131 6

lo 04 M *n.4
P 4 * 4 pq ad' aq

*006 *0)) 4 so ir
- 4 bidM V4

P~4 o P4 A4 Q-A 4% 5E
*..4 4 * *h4 w0V-

CP4 ~4 * cG L - p

ca5 4 04 W V) 2t -4 'q iv

W ,P ' * : 1. *- C 4 U)5 4A
P4 * L) P40*4 4 0. P4 U)

*U4 U * * .aU 2m 54 I pq A
= .540Ci* -i) P4U U)-

94 * 94..4 PitJ~ V4 54 P4 0 cc
04* 0i24 04 4 t)* 4C.) C.) 9 -- 4A

Z&O 0 V-~* 4 W4v* %.00) 0 P l 4 014
PC 04~ Ps tu A. a:* E-P b"i

b*Z4Oi444 N. zw 0' -.

- As * 0.0 '-'4 4 P4)o17
p. to z C P454"

02I; 0" * 4. N

hi~~2 w4 024 b4.1~-"I. .4 Z2 cm z U)p
312 tv - 4 .CQ 0 a 04

A4h 0. 00 L46
A4 1- 2ilu

04 6 4 E4 hI.4

hi4 A. 0 A4

P4C- P4 1.0 4 04 h

E--

OD'4

5 "4 wN cm

OD U 40 cDSto
InI kc) Wn vfl to

132

C4

4 s

.E,
A

as 4

* ',€J -
0a*

o z

(M

Z~ C-4

0), 0 (3) CD (s, 04

w.4 r4 .0 v 4 4v

04 90

=,. ra n , ',

0

(I-

o . o

al

2133

5..f
°

APPENDIX C

ADVANCE Procedure (HANDLE, INSTANCE)

Begin

Call WAITLOCK (APT)

I wake up !

PROCESS :- EVENT LIST HEAD (HANDLE, INSTANCE)

COUNT := MM ADVANCE COUNT (HANDLE, INSTANCE)

I make ready I

Do while not end of READY LIST
If PROCESS.COUNT <- COUNT THEN
Call MAKE-READY

end If
end do

I initialize preempt array I

Do for VPID - 1 TO #NRVP
RUNNING LIST (VP ID].PREEMPT := #TRUE

end do

I find preempt candidates I

CANDIDATES :- C

PROCESS :- READTLISTHEAD

Do (for VPID :- 1 to #NRVP) and not end READYLIST

If PROCESS - #RUNNING THEN
RUNNINGLIST [VP_ID).PREEMPT :" #PALSE

else
CANDIDATE :- CANDIDATE 1

end if

Get next ready process
end do

134

.... ...2..J.

Ipreem~pt candidates I

Do for VP ID :- 1 to CANDIDATES
If RUNNING VP (VP IDI - #TRUE Then
Call SET?PREEMPf (VP-ID)

end if
end do

Call WAIT-UNLOCK (APT)J

Return

End ADVANCE

135

AWAIT Procedure (HANDLE, INSTANCE. COUNT)

Begin

Call WAIT LOCK (APT)

VPID :- RUNNINGVP

PROCESS := RUNNING LIST [VP_ID]

CURRENT COUNT := MMREAD-COUNT (HANDLE, INSTANCE)

If CURRENT COUNT < COUNT Then
Call THREID BLOCKED LIST (HANDLE, INSTANCE, PROCESS)
PROCESS.HANDLE := HANDLE
PROCESS.INSTANCE :- INSTANCE
PROCESS.COUNT -- COUNT
PROCESS.STATE M= #BLOCKED

Call TC GETVORK

end If

Return

End AWAIT

136

LIST OF RZFERENCES

1. Coleman, A. A., Security fernel Dell=i _fnr a
Microprocessor-based Multilevel Archival Storage

mMSThesis, Naval Postgraduate School,
br1979.

2. Parks, T. J., Tbe Destn of a Secure File Storae

S~yse ,MS Thesis, Naval Postgraduate Schools

3. Moore, K. 1. and Gary, A. V., The Design and
Im0gleffentation of the Memory Manager for a Secure
Archival Storage System, MS Thesis, Naval
Postgraduate School, Mue 198e.

4. O'Connell, J. Sep and Richardson, L. D., DittributrLLi
Secure Desirn for a Multi-Microprocessor Operating
System, MS Thesis, Naval Postgraduae School,
June 1979.

5. Schell, LTCOL R. R., Security Kernels: A Methodical
Desiorn of System Security, USE Technical Papers
(Spring Conference, 1979). pp. 245-250, March 1979.

a~~~ 0eul Kenlfrte PD -11 45. ESD-TR-75-69,
The MITRE Corporation, Bedford, Mass., May 1975.

7. Lampson, 3. We, Protection, Proc. Fifth Princeton
symposium on Information Sciences and Systems,
Princeton U., March 1971, pp. 437-442.

8. Dijkstra, 1. W.9,The Structure of the 'THE'
Multiprogramming System ,Communications of thp 1CM,
v. 11, p. 341-346, May 198e.

9. Madnick, S. 7. and Donovon, J. J., Operating
Systems, McGraw Hill, 1974.

137

10. Saltzer, J. H., Traffic Control in a Multtnl~xed
CompStr System, Ph.D. Thesis, Massachusetts
Institute of Technology, :uly 1966.

11. Reed, D. P., and Kanoda, R. K.. "Synchronization
with Iventcounts and Sequencers , Communications Of
t C V. 22, No. 2, February 1979, p. 115-123.

12. Reed, D. P., Processor MultilexinR in a Layered
?Oerating System, MS , Massachusetts Institute of
T eh noloy , MIT- LCS/TR-164, 1976.

13. Jensen, R. W., and Tonies, C. C., Software Enginerring,
Prentice-Hall, Inc., 1979.

14. Dijkstra, F. W., "The Humble Pro rammer"t Irmmlrittn"
of th .. V. 15, No. 10, p. 8959-866, October 1972.

15. Schroeder, M. D., Clark, D. D., and Saltzer, J. B.,
The Multics Kernel Design Project, Paper presented at
ACM Symposium, November, 1977.

16. Schroeder, M. D., "A Hardware Architecture for
Implementating Protection Rings , Communications of
the ACM, 1. 15, No. 3, p. 157-170, March 1972.

17. Peuto, B. L., "Architecture of a New Microprocessor",
Computer V. 12, No. 2, p. 10-20, February 1979.

18. Orleanick, 1. I., The Multics System: An Examination of
its Structure, MIT Press, 1972.

19. Wasson,_ V.J., Detailed Desian of the Kernel of
leal time Multi|rocessor Operatline System,
MS Thesis, Naval Postgraduate School, June 1980.

138

1--S

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
No. Coiles

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Prof. Lyle A. Cox, Jr., Code 52C1 4
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. LTCOL Roger R. Schell, Code 52SJ 5
Department of Computer Science
Naval Postgraduate School

Monterey, California 93940

6. Joel Trimble, Code 221 1
Office of. Naval Research
800 North Quincy
Arlington, Virginia 22217

7. LT Alan V. Gary 1
3320 W. Epler Ave.
Indianapolis, Indiana 46217

S. LCDR Edmund 1. Moore
NAILEIS IS COM
PMI 107
Vashington, D.C. 20360

9. CAPT John L. Ross
10? Headon St.
Weatherford, Texas 76086

10. LT Ral R. Povell
1295 Reathers tone Way
Sunnyvale, California 94187

139

11. Office of Research Administriation
Code 012A
Naval Postgraduate School
Monterey, California 9394e

12. Prof. Uno R. Kodres, Code 52Kr
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

13. I. Larry Avrunin, CodelS
DTNS!DC
Bethesda, Maryland 20084

14. R. P. Crabb, Code 9134
Naval Oceans Systems CenterSan Diego, California 92152

15. Kathryn Heninger, Code 7503
Naval Research Lab
Washington, D.C. 20375

16. Dr. J. McGraw I
U.C. - L.L.L. (1-794)
P.O. Bdx 808
Livermore, California 94550

17 Mark Underwood
NPRDC
San Diego, California 92152

1. Walter P. Warner, Code K70 1
NSWC
Dahlgren, Virginia 22448

19. M. George Michael I
U.C. - L.L.L. (L-76)
P.O. Box 808
Livermore, California 94550

20. LCDI Stephen L. Reitz
NAVSIA TICHRIP
St. Paul, Minnesota 30845 2

140

Li

I

